Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38781957

RESUMEN

The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.

3.
Sci Adv ; 9(11): eadd5582, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36930720

RESUMEN

Using genome-wide data of 89 ancient individuals dated to 5100 to 100 years before the present (B.P.) from 29 sites across the Tibetan Plateau, we found plateau-specific ancestry across plateau populations, with substantial genetic structure indicating high differentiation before 2500 B.P. Northeastern plateau populations rapidly showed admixture associated with millet farmers by 4700 B.P. in the Gonghe Basin. High genetic similarity on the southern and southwestern plateau showed population expansion along the Yarlung Tsangpo River since 3400 years ago. Central and southeastern plateau populations revealed extensive genetic admixture within the plateau historically, with substantial ancestry related to that found in southern and southwestern plateau populations. Over the past ~700 years, substantial gene flow from lowland East Asia further shaped the genetic landscape of present-day plateau populations. The high-altitude adaptive EPAS1 allele was found in plateau populations as early as in a 5100-year-old individual and showed a sharp increase over the past 2800 years.


Asunto(s)
Pueblo Asiatico , Genoma , Humanos , Tibet , Genética Humana , Asia Oriental
4.
J Genet Genomics ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36933795

RESUMEN

The settlement of the Tibetan Plateau epitomizes human adaptation to a high-altitude environment that poses great challenges to human activity. Here, we reconstruct a 4,000-year maternal genetic history of Tibetans using 128 ancient mitochondrial genome data from 37 sites in Tibet. The phylogeny of haplotypes M9a1a, M9a1b, D4g2, G2a'c, and D4i show that ancient Tibetans shared the most recent common ancestor (TMRCA) with ancient Middle and Upper Yellow River populations around the Early and Middle Holocene. In addition, the connections between Tibetans and Northeastern Asians varied over the past 4,000 years, with a stronger matrilineal connection between the two during 4,000-3,000 BP, and a weakened connection after 3,000 BP, that were coincident with climate change, followed by a reinforced connection after the Tubo period (1,400-1,100 BP). Besides, an over 4,000-year matrilineal continuity was observed in some of the maternal lineages. We also found the maternal genetic structure of ancient Tibetans was correlated to the geography and interactions between ancient Tibetans and ancient Nepal and Pakistan populations. Overall, the maternal genetic history of Tibetans can be characterized as a long-term matrilineal continuity with frequent internal and external population interactions that were dynamically shaped by geography, climate changes, as well as historical events.

7.
Front Genet ; 13: 909267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692842

RESUMEN

Shimao City is considered an important political and religious center during the Late Neolithic Longshan period of the Middle Yellow River basin. The genetic history and population dynamics among the Shimao and other ancient populations, especially the Taosi-related populations, remain unknown. Here, we sequenced 172 complete mitochondrial genomes, ranging from the Yangshao to Longshan period, from individuals related to the Shimao culture in northern Shaanxi Province and Taosi culture in southern Shanxi Province, Middle Yellow River basin. Our results show that the populations inhabiting Shimao City had close genetic connections with an earlier population in the Middle Neolithic Yangshao period of northern Shaanxi Province, revealing a mostly local origin for the Shimao Society. In addition, among the populations in other regions of the Yellow River basin, the Shimao-related populations had the closest maternal affinity with the contemporaneous Taosi populations from the Longshan period. The Shimao-related populations also shared more affinity with present-day northern Han populations than with the minorities and southern Han in China. Our study provides a new perspective on the genetic origins and structure of the Shimao people and the population dynamics in the Middle Yellow River basin during the Neolithic period.

8.
Yi Chuan ; 44(5): 362-369, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35729694

RESUMEN

Recent success in the retrieval of nuclear DNA of ancient humans and animals from cave sediments paves the way for genome-wide studies of past populations directly from sediments. In three studies, nuclear genomes of different species were obtained from the sediments of multiple archeological caves and their genetic histories were revealed, including an unknown population replacement of Neanderthals from Estatuas cave in Spain, which was recovered using a new DNA capture approach. By extending sediments as a source of DNA beyond fossils, this breakthrough is of particular significance to the field of ancient human genomics, which brings about more possibilities for exploring the history of past population migration, evolution and adaptation within larger time-scales and geographical areas where no fossil remains exist. Here, we mainly review the significance of the technical advances in retrieving ancient nuclear DNA from sediments and present new insights into the genetic history of Neanderthals revealed by this technique. By combining ancient genomes retrieved from fossils and additional mitochondrial DNA extracted from sediments of archaeological sites, we may begin investigating diverse archaic populations and examine their genetic relationships, movements and replacements in detail.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , ADN Antiguo , ADN Mitocondrial/genética , Genoma Humano , Hominidae/genética , Humanos , Hombre de Neandertal/genética
9.
Science ; 376(6588): 62-69, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357918

RESUMEN

The Xinjiang region in northwest China is a historically important geographical passage between East and West Eurasia. By sequencing 201 ancient genomes from 39 archaeological sites, we clarify the complex demographic history of this region. Bronze Age Xinjiang populations are characterized by four major ancestries related to Early Bronze Age cultures from the central and eastern Steppe, Central Asian, and Tarim Basin regions. Admixtures between Middle and Late Bronze Age Steppe cultures continued during the Late Bronze and Iron Ages, along with an inflow of East and Central Asian ancestry. Historical era populations show similar admixed and diverse ancestries as those of present-day Xinjiang populations. These results document the influence that East and West Eurasian populations have had over time in the different regions of Xinjiang.

10.
J Genet Genomics ; 48(10): 899-907, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34419425

RESUMEN

Southern East Asia, including Guangxi and Fujian provinces in China, is home to diverse ethnic groups, languages, and cultures. Previous studies suggest a high complexity regarding population dynamics and the history of southern East Asians. However, large-scale genetic studies on ancient populations in this region are hindered by limited sample preservation. Here, using highly efficient DNA capture techniques, we obtain 48 complete mitochondrial genomes of individuals from Guangxi and Fujian in China and reconstruct their maternal genetic history over the past 12,000 years. We find a strong connection between southern East Asians dating to ~12,000-6000 years ago and present-day Southeast Asians. In addition, stronger genetic affinities to northern East Asians are observed in historical southern East Asians than Neolithic southern East Asians, suggesting increased interactions between northern and southern East Asians over time. Overall, we reveal dynamic connections between ancient southern East Asians and populations located in surrounding regions, as well as a shift in maternal genetic structure within the populations over time.


Asunto(s)
Genética de Población
12.
Mol Biol Evol ; 38(11): 4908-4917, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320653

RESUMEN

Although Uzbekistan and Central Asia are known for the well-studied Bronze Age civilization of the Bactria-Margiana Archaeological Complex (BMAC), the lesser-known Iron Age was also a dynamic period that resulted in increased interaction and admixture among different cultures from this region. To broaden our understanding of events that impacted the demography and population structure of this region, we generated 27 genome-wide single-nucleotide polymorphism capture data sets of Late Iron Age individuals around the Historical Kushan time period (∼2100-1500 BP) from three sites in South Uzbekistan. Overall, Bronze Age ancestry persists into the Iron Age in Uzbekistan, with no major replacements of populations with Steppe-related ancestry. However, these individuals suggest diverse ancestries related to Iranian farmers, Anatolian farmers, and Steppe herders, with a small amount of West European Hunter Gatherer, East Asian, and South Asian Hunter Gatherer ancestry as well. Genetic affinity toward the Late Bronze Age Steppe herders and a higher Steppe-related ancestry than that found in BMAC populations suggest an increased mobility and interaction of individuals from the Northern Steppe in a Southward direction. In addition, a decrease of Iranian and an increase of Anatolian farmer-like ancestry in Uzbekistan Iron Age individuals were observed compared with the BMAC populations from Uzbekistan. Thus, despite continuity from the Bronze Age, increased admixture played a major role in the shift from the Bronze to the Iron Age in southern Uzbekistan. This mixed ancestry is also observed in other parts of the Steppe and Central Asia, suggesting more widespread admixture among local populations.


Asunto(s)
Arqueología , Migración Humana , ADN Antiguo , Agricultores , Genoma Humano , Historia Antigua , Humanos , Irán , Uzbekistán
13.
Cell ; 184(14): 3829-3841.e21, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171307

RESUMEN

Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two ∼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that ∼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to ∼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.


Asunto(s)
Genética de Población , Asia Sudoriental , Asia Oriental , Geografía , Humanos
14.
Cell ; 184(12): 3256-3266.e13, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34048699

RESUMEN

Northern East Asia was inhabited by modern humans as early as 40 thousand years ago (ka), as demonstrated by the Tianyuan individual. Using genome-wide data obtained from 25 individuals dated to 33.6-3.4 ka from the Amur region, we show that Tianyuan-related ancestry was widespread in northern East Asia before the Last Glacial Maximum (LGM). At the close of the LGM stadial, the earliest northern East Asian appeared in the Amur region, and this population is basal to ancient northern East Asians. Human populations in the Amur region have maintained genetic continuity from 14 ka, and these early inhabitants represent the closest East Asian source known for Ancient Paleo-Siberians. We also observed that EDAR V370A was likely to have been elevated to high frequency after the LGM, suggesting the possible timing for its selection. This study provides a deep look into the population dynamics of northern East Asia.


Asunto(s)
Dinámica Poblacional , ADN Antiguo/análisis , Asia Oriental , Femenino , Variación Genética , Genética de Población , Genoma Humano , Geografía , Humanos , Cubierta de Hielo , Funciones de Verosimilitud , Masculino , Modelos Genéticos , Filogenia , Análisis de Componente Principal , Factores de Tiempo
15.
Sci Adv ; 7(14)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33789892

RESUMEN

Xinjiang is a key region in northwestern China, connecting East and West Eurasian populations and cultures for thousands of years. To understand the genetic history of Xinjiang, we sequenced 237 complete ancient human mitochondrial genomes from the Bronze Age through Historical Era (41 archaeological sites). Overall, the Bronze Age Xinjiang populations show high diversity and regional genetic affinities with Steppe and northeastern Asian populations along with a deep ancient Siberian connection for the Tarim Basin Xiaohe individuals. In the Iron Age, in general, Steppe-related and northeastern Asian admixture intensified, with North and East Xinjiang populations showing more affinity with northeastern Asians and South Xinjiang populations showing more affinity with Central Asians. The genetic structure observed in the Historical Era of Xinjiang is similar to that in the Iron Age, demonstrating genetic continuity since the Iron Age with some additional genetic admixture with populations surrounding the Xinjiang region.

16.
Sci Bull (Beijing) ; 66(11): 1129-1135, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654346

RESUMEN

Archaeological and ancient DNA studies revealed that Shandong, a multi-culture center in northern coastal China, was home to ancient populations having ancestry related to both northern and southern East Asian populations. However, the limited temporal and geographical range of previous studies have been insufficient to describe the population history of this region in greater detail. Here, we report the analysis of 86 complete mitochondrial genomes from the remains of 9500 to 1800-year-old humans from 12 archaeological sites across Shandong. For samples older than 4600 years before present (BP), we found haplogroups D4, D5, B4c1, and B5b2, which are observed in present-day northern and southern East Asians. For samples younger than 4600 BP, haplogroups C (C7a1 and C7b), M9 (M9a1), and F (F1a1, F2a, and F4a1) begin to appear, indicating changes in the Shandong maternal genetic structure starting from the beginning of the Longshan cultural period. Within Shandong, the genetic exchange is possible between the coastal and inland regions after 3100 BP. We also discovered the B5b2 lineage in Shandong populations, with the oldest Bianbian individual likely related to the ancestors of some East Asians and North Asians. By reconstructing a maternal genetic structure of Shandong populations, we provide greater resolution of the population dynamics of the northern coastal East Asia over the past nine thousand years.

17.
Science ; 370(6516): 584-587, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122381

RESUMEN

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.


Asunto(s)
Cuevas , ADN Antiguo/aislamiento & purificación , Sedimentos Geológicos/química , Hominidae/clasificación , Hominidae/genética , Animales , ADN Mitocondrial/genética , Humanos , Filogenia , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...