Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473703

RESUMEN

Multiple sclerosis (MS) is the most common autoimmune demyelinating disease of the central nervous system (CNS), consisting of heterogeneous clinical courses varying from relapsing-remitting MS (RRMS), in which disability is linked to bouts of inflammation, to progressive disease such as primary progressive MS (PPMS) and secondary progressive MS (SPMS), in which neurological disability is thought to be linked to neurodegeneration. As a result, successful therapeutics for progressive MS likely need to have both anti-inflammatory and direct neuroprotective properties. The modulation of sphingosine-1-phosphate (S1P) receptors has been implicated in neuroprotection in preclinical animal models. Siponimod/BAF312, the first oral treatment approved for SPMS, may have direct neuroprotective benefits mediated by its activity as a selective (S1P receptor 1) S1P1 and (S1P receptor 5) S1P5 modulator. We showed that S1P1 was mainly present in cortical neurons in lesioned areas of the MS brain. To gain a better understanding of the neuroprotective effects of siponimod in MS, we used both rat neurons and human-induced pluripotent stem cell (iPSC)-derived neurons treated with the neuroinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Cell survival/apoptotic assays using flow cytometry and IncuCyte live cell analyses showed that siponimod decreased TNF-α induced neuronal cell apoptosis in both rat and human iPSCs. Importantly, a transcriptomic analysis revealed that mitochondrial oxidative phosphorylation, NFκB and cytokine signaling pathways contributed to siponimod's neuroprotective effects. Our data suggest that the neuroprotection of siponimod/BAF312 likely involves the relief of oxidative stress in neuronal cells. Further studies are needed to explore the molecular mechanisms of such interactions to determine the relationship between mitochondrial dysfunction and neuroinflammation/neurodegeneration.


Asunto(s)
Azetidinas , Compuestos de Bencilo , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Fármacos Neuroprotectores , Humanos , Animales , Ratas , Receptores de Esfingosina-1-Fosfato , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Factor de Necrosis Tumoral alfa/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Muerte Celular
2.
Brain ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226694

RESUMEN

Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis (MS) and have implications for non-relapsing biological progression. In recent years, the discovery of innovative magnetic resonance imaging (MRI) and PET derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with MS, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted (T1-w) and T2-w scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification, and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a Consensus Statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this Consensus Statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36041861

RESUMEN

The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Biomarcadores , Progresión de la Enfermedad , Humanos , Inflamación , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple Crónica Progresiva/diagnóstico , Esclerosis Múltiple Crónica Progresiva/patología
4.
Tomography ; 8(3): 1544-1551, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35736875

RESUMEN

Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g., myelin and iron) that contribute constructively to R2* value but destructively to the QSM value of a voxel. This R2*QSM technique is validated against quantitative histology­optical density of myelin basic protein and Perls' iron histological stains of rim and core of 10 ex vivo multiple sclerosis lesions, as well as neighboring normal appearing white matter. We found that R2*QSM source maps are in good qualitative agreement with histology, e.g., showing increased iron concentration at the edge of the rim+ lesions and myelin loss in the lesions' core. Furthermore, our results indicate statistically significant correlation between paramagnetic and diamagnetic tissue components estimated with R2*QSM and optical densities of Perls' and MPB stains. These findings provide direct support for the use of R2*QSM magnetic source separation based solely on GRE complex data to characterize MS lesion composition.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
5.
Neurol Neurochir Pol ; 56(3): 228-235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712986

RESUMEN

For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging techniques, and disease-specific biomarkers. As a result, our knowledge of MS pathophysiology is more mature; the established clinical practice for the diagnosis and management of MS could serve as a roadmap to guide the development of more disease-specific interventions. In this article we briefly review the main achievements in the evolution of clinical trials for MS, and discuss opportunities for improvements.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/terapia
6.
J Neuroimaging ; 32(5): 852-859, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35668022

RESUMEN

BACKGROUND AND PURPOSE: The objective is to demonstrate feasibility of separating magnetic sources in quantitative susceptibility mapping (QSM) by incorporating magnitude decay rates R 2 ∗ $R_2^{\rm{*}}$ in gradient echo (GRE) MRI. METHODS: Magnetic susceptibility source separation was developed using R 2 ∗ $R_2^{\rm{*}}$ and compared with a prior method using R 2 ' = R 2 ∗ - R 2 ${R^{\prime}_2} = R_2^* - {R_2}$ that required an additional sequence to measure the transverse relaxation rate R2 . Both susceptibility separation methods were compared in multiple sclerosis (MS) patients (n = 17). Susceptibility values of negative sources estimated with R 2 ∗ $R_2^{\rm{*}}$ -based source separation in a set of enhancing MS lesions (n = 44) were correlated against longitudinal myelin water fraction (MWF) changes. RESULTS: In in vivo data, linear regression of the estimated χ + ${\chi}^{+}$ and χ - ${\chi}^{-}$ susceptibility values between the R 2 ∗ $R_2^*$ - and the R 2 ' ${R^{\prime}_2}$ -based separation methods performed across 182 segmented lesions revealed correlation coefficient r = .96 and slope close .99. Correlation analysis in enhancing lesions revealed a significant positive association between the χ - ${\chi}^{-}$ increase at 1-year post-onset relative to 0 year and the MWF increase at 1 year relative to 0 year (ß = -0.144, 95% confidence interval: [-0.199, -0.1], p = .0008) and good agreement between R 2 ' ${R^{\prime}_2}$ and R 2 ∗ $R_2^*$ methods (r = .79, slope = .95). CONCLUSIONS: Separation of magnetic sources based solely on GRE complex data is feasible by combining magnitude decay rate modeling and phase-based QSM and χ - ${\chi}^{-}$ change may serve as a biomarker for myelin recovery or damage in acute MS lesions.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Biomarcadores , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Agua
7.
Front Neurol ; 13: 854390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432156

RESUMEN

The advent of disease modifying therapies (DMT) in the past two decades has been the cornerstone of successful clinical management of multiple sclerosis (MS). Despite the great strides made in reducing the relapse frequency and occurrence of new signal changes on neuroimaging in patients with relapsing remitting MS (RRMS) by approved DMT, it has been challenging to demonstrate their effectiveness in non-active secondary progressive MS (SPMS) and primary progressive MS (PPMS) disease phenotypes. The dichotomy of DMT effectiveness between RRMS and progressive MS informs on distinct pathogeneses of the different MS phenotypes. Conversely, factors that render patients with progressive MS resistant to therapy are not understood. Thus far, age has emerged as the main correlate of the transition from RRMS to SPMS. Whether it is aging and age-related factors or the underlying immune senescence that qualitatively alter immune responses as the disease transitions to SPMS, that diminish DMT effectiveness, or both, is currently not known. Here, we will discuss the role of immune senescence on different arms of the immune system, and how it may explain relative DMT resistance.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35046083

RESUMEN

BACKGROUND AND OBJECTIVES: To determine the effects of dimethyl fumarate (DMF) and glatiramer acetate on iron content in chronic active lesions in patients with multiple sclerosis (MS) and in human microglia in vitro. METHODS: This was a retrospective observational study of 34 patients with relapsing-remitting MS and clinically isolated syndrome treated with DMF or glatiramer acetate. Patients had lesions with hyperintense rims on quantitative susceptibility mapping, were treated with DMF or glatiramer acetate (GA), and had a minimum of 2 on-treatment scans. Changes in susceptibility in rim lesions were compared among treatment groups in a linear mixed effects model. In a separate in vitro study, induced pluripotent stem cell-derived human microglia were treated with DMF or GA, and treatment-induced changes in iron content and activation state of microglia were compared. RESULTS: Rim lesions in patients treated with DMF had on average a 2.77-unit reduction in susceptibility per year over rim lesions in patients treated with GA (bootstrapped 95% CI -5.87 to -0.01), holding all other variables constant. Moreover, DMF but not GA reduced inflammatory activation and concomitantly iron content in human microglia in vitro. DISCUSSION: Together, our data indicate that DMF-induced reduction of susceptibility in MS lesions is associated with a decreased activation state in microglial cells. We have demonstrated that a specific disease modifying therapy, DMF, decreases glial activity in chronic active lesions. Susceptibility changes in rim lesions provide an in vivo biomarker for the effect of DMF on microglial activity. CLASSIFICATION OF EVIDENCE: This study provided Class III evidence that DMF is superior to GA in the presence of iron as a marker of inflammation as measured by MRI quantitative susceptibility mapping.


Asunto(s)
Dimetilfumarato/farmacología , Acetato de Glatiramer/farmacología , Inmunosupresores/farmacología , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Adulto , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Microglía , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Enfermedades Neuroinflamatorias/patología , Estudios Retrospectivos
9.
Nat Commun ; 12(1): 5074, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417463

RESUMEN

ß cells may participate and contribute to their own demise during Type 1 diabetes (T1D). Here we report a role of their expression of Tet2 in regulating immune killing. Tet2 is induced in murine and human ß cells with inflammation but its expression is reduced in surviving ß cells. Tet2-KO mice that receive WT bone marrow transplants develop insulitis but not diabetes and islet infiltrates do not eliminate ß cells even though immune cells from the mice can transfer diabetes to NOD/scid recipients. Tet2-KO recipients are protected from transfer of disease by diabetogenic immune cells.Tet2-KO ß cells show reduced expression of IFNγ-induced inflammatory genes that are needed to activate diabetogenic T cells. Here we show that Tet2 regulates pathologic interactions between ß cells and immune cells and controls damaging inflammatory pathways. Our data suggests that eliminating TET2 in ß cells may reduce activating pathologic immune cells and killing of ß cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 1/patología , Inflamación/patología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Secuencia de Bases , Citotoxicidad Inmunológica , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Dioxigenasas , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Linfocitos T/inmunología , Transcripción Genética
10.
Front Cell Neurosci ; 15: 726479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456686

RESUMEN

The emergence of single cell technologies provides the opportunity to characterize complex immune/central nervous system cell assemblies in multiple sclerosis (MS) and to study their cell population structures, network activation and dynamics at unprecedented depths. In this review, we summarize the current knowledge of astrocyte subpopulations in MS tissue and discuss the challenges associated with resolving astrocyte heterogeneity with single-nucleus RNA-sequencing (snRNA-seq). We further discuss multiplexed imaging techniques as tools for defining population clusters within a spatial context. Finally, we will provide an outlook on how these technologies may aid in answering unresolved questions in MS, such as the glial phenotypes that drive MS progression and/or neuropathological differences between different clinical MS subtypes.

11.
NMR Biomed ; 34(11): e4590, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318959

RESUMEN

The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.


Asunto(s)
Lóbulo Frontal/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Adulto , Anciano , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Femenino , Glutamina/metabolismo , Glutatión/metabolismo , Sustancia Gris/metabolismo , Humanos , Inositol/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Neurotransmisores/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
12.
Ann Clin Transl Neurol ; 8(4): 877-886, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33704933

RESUMEN

BACKGROUND: Inflammation in chronic active lesions occurs behind a closed blood-brain barrier and cannot be detected with MRI. Activated microglia are highly enriched for iron and can be visualized with quantitative susceptibility mapping (QSM), an MRI technique used to delineate iron. OBJECTIVE: To characterize the histopathological correlates of different QSM hyperintensity patterns in MS lesions. METHODS: MS brain slabs were imaged with MRI and QSM, and processed for histology. Immunolabeled cells were quantified in the lesion rim, center, and adjacent normal-appearing white matter (NAWM). Iron+ myeloid cell densities at the rims were correlated with susceptibilities. Human-induced pluripotent stem cell (iPSC)-derived microglia were used to determine the effect of iron on the production of reactive oxygen species (ROS) and pro-inflammatory cytokines. RESULTS: QSM hyperintensity at the lesion perimeter correlated with activated iron+ myeloid cells in the rim and NAWM. Lesions with high punctate or homogenous QSM signal contained no or minimally activated iron- myeloid cells. In vitro, iron accumulation was highest in M1-polarized human iPSC-derived microglia, but it did not enhance ROS or cytokine production. CONCLUSION: A high QSM signal outlining the lesion rim but not punctate signal in the center is a biomarker for chronic inflammation in white matter lesions.


Asunto(s)
Imagen por Resonancia Magnética , Microglía , Esclerosis Múltiple , Enfermedades Neuroinflamatorias , Sustancia Blanca , Adulto , Biomarcadores , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Hierro/metabolismo , Masculino , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/inmunología , Sustancia Blanca/patología
13.
J Environ Manage ; 275: 111075, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32861905

RESUMEN

We investigate a new framework for estimating the frequency and severity of losses associated with catastrophic risks such as bushfires, storms and floods. We explore generalized additive models for location, scale and shape (GAMLSS) for the quantification of regional risk factors - geographical, weather and climate variables - with the aim of better quantifying the frequency and severity of catastrophic losses from natural perils. Due to the flexibility of the GAMLSS approach, we find a superior fit to empirical loss data for the applied models in comparison to generalized linear regression models typically applied in the literature. In particular the generalized beta distribution of the second kind (GB2) provides a good fit to the severity of losses. Including covariates in the calibration of the scale parameter, we obtain vastly differently shaped distributions for the predicted individual losses at different levels of the covariates. Testing the GAMLSS approach in an out-of-sample validation exercise, we also find support for a correct specification of the estimated models. More accurate models for the losses from natural hazards will help state and local government policy development, in particular for risk management and scenario planning for emergency services with respect to these perils.


Asunto(s)
Clima , Tiempo (Meteorología) , Inundaciones , Modelos Lineales , Factores de Riesgo
14.
Artículo en Inglés | MEDLINE | ID: mdl-32269065

RESUMEN

OBJECTIVE: To identify coinhibitory immune pathways important in the brain, we hypothesized that comparison of T cells in lesions from patients with MS with tumor-infiltrating T cells (TILs) from patients with glioblastoma multiforme may reveal novel targets for immunotherapy. METHODS: We collected fresh surgical resections and matched blood from patients with glioblastoma, blood and unmatched postmortem CNS tissue from patients with MS, and blood from healthy donors. The expression of TIGIT, CD226, and their shared ligand CD155 as well as PD-1 and PDL1 was assessed by both immunohistochemistry and flow cytometry. RESULTS: We found that TIGIT was highly expressed on glioblastoma-infiltrating T cells, but was near-absent from MS lesions. Conversely, lymphocytic expression of PD-1/PD-L1 was comparable between the 2 diseases. Moreover, TIGIT was significantly upregulated in circulating lymphocytes of patients with glioblastoma compared with healthy controls, suggesting recirculation of TILs. Expression of CD226 was also increased in glioblastoma, but this costimulatory receptor was expressed alongside TIGIT in the majority of tumor-infiltrating T cells, suggesting functional counteraction. CONCLUSIONS: The opposite patterns of TIGIT expression in the CNS between MS and glioblastoma reflects the divergent features of the immune response in these 2 CNS diseases. These data raise the possibility that anti-TIGIT therapy may be beneficial for patients with glioblastoma.


Asunto(s)
Neoplasias del Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/metabolismo , Glioblastoma/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Receptores Inmunológicos/metabolismo , Adulto , Anciano , Neoplasias del Sistema Nervioso Central/sangre , Neoplasias del Sistema Nervioso Central/patología , Femenino , Glioblastoma/sangre , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/patología , Receptores Inmunológicos/sangre , Regulación hacia Arriba
15.
Front Neurol ; 10: 1173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803127

RESUMEN

Proton magnetic resonance spectroscopy (1H-MRS) offers a growing variety of methods for querying potential diagnostic biomarkers of multiple sclerosis in living central nervous system tissue. For the past three decades, 1H-MRS has enabled the acquisition of a rich dataset suggestive of numerous metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord of individuals with multiple sclerosis, but this body of information is not free of seeming internal contradiction. The use of 1H-MRS signals as diagnostic biomarkers depends on reproducible and generalizable sensitivity and specificity to disease state that can be confounded by a multitude of influences, including experiment group classification and demographics; acquisition sequence; spectral quality and quantifiability; the contribution of macromolecules and lipids to the spectroscopic baseline; spectral quantification pipeline; voxel tissue and lesion composition; T 1 and T 2 relaxation; B1 field characteristics; and other features of study design, spectral acquisition and processing, and metabolite quantification about which the experimenter may possess imperfect or incomplete information. The direct comparison of 1H-MRS data from individuals with and without multiple sclerosis poses a special challenge in this regard, as several lines of evidence suggest that experimental cohorts may differ significantly in some of these parameters. We review the existing findings of in vivo 1H-MRS on central nervous system metabolic abnormalities in multiple sclerosis and its subtypes within the context of study design, spectral acquisition and processing, and metabolite quantification and offer an outlook on technical considerations, including the growing use of machine learning, by future investigations into diagnostic biomarkers of multiple sclerosis measurable by 1H-MRS.

16.
Acta Neuropathol Commun ; 7(1): 130, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31405387

RESUMEN

Activated myeloid cells and astrocytes are the predominant cell types in active multiple sclerosis (MS) lesions. Both cell types can adopt diverse functional states that play critical roles in lesion formation and resolution. In order to identify phenotypic subsets of myeloid cells and astrocytes, we profiled two active MS lesions with thirteen glial activation markers using imaging mass cytometry (IMC), a method for multiplexed labeling of histological sections. In the acutely demyelinating lesion, we found multiple distinct myeloid and astrocyte phenotypes that populated separate lesion zones. In the post-demyelinating lesion, phenotypes were less distinct and more uniformly distributed. In both lesions cell-to-cell interactions were not random, but occurred between specific glial subpopulations and lymphocytes. Finally, we demonstrated that myeloid, but not astrocyte phenotypes were activated along a lesion rim-to-center gradient, and that marker expression in glial cells at the lesion rim was driven more by cell-extrinsic factors than in cells at the center. This proof-of-concept study demonstrates that highly multiplexed tissue imaging, combined with the appropriate computational tools, is a powerful approach to study heterogeneity, spatial distribution and cellular interactions in the context of MS lesions. Identifying glial phenotypes and their interactions at different lesion stages may provide novel therapeutic targets for inhibiting acute demyelination and low-grade, chronic inflammation.


Asunto(s)
Astrocitos/patología , Comunicación Celular/fisiología , Esclerosis Múltiple Recurrente-Remitente/patología , Células Mieloides/patología , Fenotipo , Adulto , Astrocitos/metabolismo , Femenino , Humanos , Masculino , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Células Mieloides/metabolismo
17.
Elife ; 82019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368890

RESUMEN

Multiple sclerosis (MS) is characterized by demyelinated and inflammatory lesions in the brain and spinal cord that are highly variable in terms of cellular content. Here, we used imaging mass cytometry (IMC) to enable the simultaneous imaging of 15+ proteins within staged MS lesions. To test the potential for IMC to discriminate between different types of lesions, we selected a case with severe rebound MS disease activity after natalizumab cessation. With post-acquisition analysis pipelines we were able to: (1) Discriminate demyelinating macrophages from the resident microglial pool; (2) Determine which types of lymphocytes reside closest to blood vessels; (3) Identify multiple subsets of T and B cells, and (4) Ascertain dynamics of T cell phenotypes vis-à-vis lesion type and location. We propose that IMC will enable a comprehensive analysis of single-cell phenotypes, their functional states and cell-cell interactions in relation to lesion morphometry and demyelinating activity in MS patients.


Asunto(s)
Citometría de Imagen/métodos , Leucocitos/clasificación , Leucocitos/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Adulto , Femenino , Humanos , Factores Inmunológicos/administración & dosificación , Esclerosis Múltiple/tratamiento farmacológico , Natalizumab/administración & dosificación , Proteínas/análisis
19.
Brain ; 142(1): 133-145, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561514

RESUMEN

Chronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation. Quantitative susceptibility mapping provides efficient in vivo quantification of susceptibility changes related to iron deposition and the potential to identify lesions harbouring iron-laden inflammatory cells. The PET tracer 11C-PK11195 targets the translocator protein expressed by activated microglia and infiltrating macrophages. Accordingly, this study aimed to validate that lesions with a hyperintense rim on quantitative susceptibility mapping from both relapsing and progressive patients demonstrate a higher level of innate immune activation as measured on 11C-PK11195 PET. Thirty patients were enrolled in this study, 24 patients had relapsing remitting multiple sclerosis, six had progressive multiple sclerosis, and all patients had concomitant MRI with a gradient echo sequence and PET with 11C-PK11195. A total of 406 chronic lesions were detected, and 43 chronic lesions with a hyperintense rim on quantitative susceptibility mapping were identified as rim+ lesions. Susceptibility (relative to CSF) was higher in rim+ (2.42 ± 17.45 ppb) compared to rim- lesions (-14.6 ± 19.3 ppb, P < 0.0001). Among rim+ lesions, susceptibility within the rim (20.04 ± 14.28 ppb) was significantly higher compared to the core (-5.49 ± 14.44 ppb, P < 0.0001), consistent with the presence of iron. In a mixed-effects model, 11C-PK11195 uptake, representing activated microglia/macrophages, was higher in rim+ lesions compared to rim- lesions (P = 0.015). Validating our in vivo imaging results, multiple sclerosis brain slabs were imaged with quantitative susceptibility mapping and processed for immunohistochemistry. These results showed a positive translocator protein signal throughout the expansive hyperintense border of rim+ lesions, which co-localized with iron containing CD68+ microglia and macrophages. In conclusion, this study provides evidence that suggests that a hyperintense rim on quantitative susceptibility measure within a chronic lesion is a correlate for persistent inflammatory activity and that these lesions can be identified in the relapsing patients. Utilizing quantitative susceptibility measure to differentiate chronic multiple sclerosis lesion subtypes, especially chronic active lesions, would provide a method to assess the impact of these lesions on disease progression.


Asunto(s)
Inflamación/diagnóstico por imagen , Inflamación/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Adulto , Anciano , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Enfermedad Crónica , Estudios Transversales , Femenino , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Hierro/metabolismo , Isoquinolinas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Masculino , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/metabolismo , Tomografía de Emisión de Positrones , Estudios Retrospectivos , Adulto Joven
20.
Nat Commun ; 9(1): 5337, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559390

RESUMEN

Epigenetic annotation studies of genetic risk variants for multiple sclerosis (MS) implicate dysfunctional lymphocytes in MS susceptibility; however, the role of central nervous system (CNS) cells remains unclear. We investigated the effect of the risk variant, rs7665090G, located near NFKB1, on astrocytes. We demonstrated that chromatin is accessible at the risk locus, a prerequisite for its impact on astroglial function. The risk variant was associated with increased NF-κB signaling and target gene expression, driving lymphocyte recruitment, in cultured human astrocytes and astrocytes within MS lesions, and with increased lesional lymphocytic infiltrates and lesion sizes. Thus, our study establishes a link between genetic risk for MS (rs7665090G) and dysfunctional astrocyte responses associated with increased CNS access for peripheral immune cells. MS may therefore result from variant-driven dysregulation of the peripheral immune system and of the CNS, where perturbed CNS cell function aids in establishing local autoimmune inflammation.


Asunto(s)
Astrocitos/metabolismo , Sistema Nervioso Central/citología , Esclerosis Múltiple/genética , Subunidad p50 de NF-kappa B/genética , Células Cultivadas , Sistema Nervioso Central/patología , Predisposición Genética a la Enfermedad/genética , Humanos , Esclerosis Múltiple/patología , Subunidad p50 de NF-kappa B/metabolismo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...