Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Materials (Basel) ; 15(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35329574

RESUMEN

Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFe2O4 nanoparticles. The liver, lung, spleen, kidneys, and heart and a blood sample were collected for biodistribution analysis and, for elimination analysis, and over 60 days. During the period analyzed, the animal's feces were also collectedd. It was possible to notice a higher uptake by the liver and the spleen due to their characteristics of retention and uptake. In 60 days, we observed an absence of MNPs in the spleen and a significant decay in the liver. We also determined the MNPs' half-life through the liver and the spleen elimination. The data indicated a concentration decay profile over the 60 days, which suggests that, in addition to elimination via feces, there is an endogenous mechanism of metabolization or possible agglomeration of MNPs, resulting in loss of ACB signal intensity.

2.
Pharmaceutics ; 13(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34452233

RESUMEN

Pharmacomagnetography involves the simultaneous assessment of solid dosage forms (SDFs) in the human gastrointestinal (GI) tract and the drug plasmatic concentration, using a biomagnetic technique and pharmacokinetics analysis. This multi-instrumental approach helps the evaluation, as GI variables can interfere with the drug delivery processes. This study aimed to employ pharmacomagnetography to evaluate the influence of omeprazole on the drug release and absorption of metronidazole administered orally in magnetic-coated tablets. Magnetic-coated tablets, coated with Eudragit® E-100 (E100) and containing 100 mg of metronidazole, were produced. For the in vivo experiments, 12 volunteers participated in the two phases of the study (placebo and omeprazole) on different days to assess the bioavailability of metronidazole. The results indicated a shift as the pH of the solution increased and a delay in the dissolution of metronidazole, showing that the pH increase interferes with the release processes of tablets coated with E100. Our study reinforced the advantages of pharmacomagnetography as a tool to perform a multi-instrumental correlation analysis of the disintegration process and the bioavailability of drugs.

3.
Nanomedicine (Lond) ; 15(5): 511-525, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32077357

RESUMEN

Aim: This paper aims to investigate a doxorubicin (DOX) chronic kidney disease rat model using magnetic nanoparticles (MNPs) associated with the alternate current biosusceptometry (ACB) to analyze its different perfusion profiles in both healthy and DOX-injured kidneys. Materials & methods: We used the ACB to detect the MNP kidney perfusion in vivo. Furthermore, we performed biochemical and histological analyses, which sustained results obtained from the ACB system. We also studied the MNP biodistribution. Results: We found that DOX kidney injury alters the MNPs' kidney perfusion. These changes became more intense as the disease progressed. Moreover, DOX has an important effect on MNP biodistribution as the disease evolved. Conclusion: This study provides new applications of MNPs in nephrology, instrumentation, pharmacology, physiology and nanomedicine.


Asunto(s)
Doxorrubicina/efectos adversos , Riñón/efectos de los fármacos , Nanopartículas de Magnetita , Animales , Riñón/fisiopatología , Ratas , Distribución Tisular
4.
Mol Pharm ; 17(3): 837-851, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31977228

RESUMEN

Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.


Asunto(s)
Portadores de Fármacos/química , Membrana Eritrocítica/química , Compuestos Férricos/química , Colorantes Fluorescentes/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Imanes/química , Compuestos de Manganeso/química , Terapia Fototérmica/métodos , Animales , Carcinoma de Ehrlich/tratamiento farmacológico , Modelos Animales de Enfermedad , Portadores de Fármacos/farmacocinética , Femenino , Compuestos Férricos/farmacocinética , Colorantes Fluorescentes/farmacocinética , Hipertermia Inducida/métodos , Compuestos de Manganeso/farmacocinética , Ratones , Tamaño de la Partícula , Nanomedicina Teranóstica/métodos , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
5.
Life Sci ; 236: 116833, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31491456

RESUMEN

AIMS: Inflammatory bowel disease is a chronic relapsing inflammation that affects the gastrointestinal tract, causing changes in colonic motility. The evolution of these changes is not completely understood and possibly related to symptoms that appear in different degrees of the intestinal inflammation. Therefore, our aim is evaluate during 14 days of assessment aspects of colonic contractility using 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of inflammation in rats and associate the inflammatory process with colonic motility. METHODS: Contractility and inflammatory parameters were assessed in the same animal in six different moments: before intestinal inflammation induction, 2, 5, 8, 11, and 14 days after induction. The mechanical activity was determined by alternating current biosusceptometry (ACB) and subdivided into rhythmic propagating ripples (RPR) and rhythmic propulsive motor complexes (RPMC). We assessed inflammation by determining myeloperoxidase activity in feces. RESULTS: Transient and permanent changes were observed in colonic motility as a function of the inflammatory process evaluated through myeloperoxidase activity. We identified two contraction profiles: RPR and RPMC. The microscopic analysis demonstrated a depth of damage caused by an injury that was associated with changes in motility. CONCLUSIONS: We implemented a robust and adequate (specific) signal processing to quantify two measured colonic frequency patterns. Thus, we performed a detailed temporal analysis of the consequences of TNBS-induced inflammation on colonic motility in rats. Our approach enables further long-term assessments in the same animal with different mechanisms and duration of injury, remission, treatments and their motor consequences.


Asunto(s)
Colitis/patología , Modelos Animales de Enfermedad , Inflamación/patología , Enfermedades Inflamatorias del Intestino/fisiopatología , Mucosa Intestinal/fisiopatología , Contracción Muscular , Ácido Trinitrobencenosulfónico/toxicidad , Animales , Colitis/inducido químicamente , Inflamación/inducido químicamente , Masculino , Ratas , Ratas Wistar
6.
IEEE Trans Nanobioscience ; 18(4): 640-650, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31398127

RESUMEN

We have showed that surface layer can determine cardiac effects of the magnetic nanoparticles (MNPs). Considering the high binding capacity of albumin and low side-effects, the aim of this study was to evaluate the influence of albumin coating on the cardiovascular effects of two manganese ferrite-based MNPs: citrate-coated and bare MNPs. Isolated rat hearts were perfused with citrate-coated magnetic nanoparticles (CiMNPs), citrate albumin-coated magnetic nanoparticles (CiAlbMNPs), bare magnetic nanoparticles (BaMNPs), and albumin-coated magnetic nanoparticles (AlbMNPs). CiMNPs induce a transient decrease in the left ventricular end-systolic pressure, +dP/dt and -dP/dt. These effects were not worsened by albumin coating. BaMNPs significantly increased the left ventricular end-diastolic pressure and perfusion pressure and decreased the +dP/dt and -dP/dt. These effects were completely absent in hearts perfused with AlbMNPs. None of the MNPs changed heart rate or arterial blood pressure in conscious rats. Magnetic signals in isolated hearts perfused with BaMNPs were significantly higher than AlbMNPs perfused hearts. However, the magnetic signal in heart tissue was similar when the MNPs were infused in conscious rats. These data indicate that albumin-coated can reduce cardiovascular effects of MNPs. These findings suggest a protective effect of albumin surface in MNPs, favoring its future therapeutic applications.


Asunto(s)
Albúminas/administración & dosificación , Compuestos Férricos/administración & dosificación , Corazón/efectos de los fármacos , Compuestos de Manganeso/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Albúminas/química , Animales , Presión Sanguínea , Compuestos Férricos/química , Corazón/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Compuestos de Manganeso/química , Nanopartículas del Metal/química , Ratas Wistar
7.
IEEE Trans Nanobioscience ; 18(3): 456-462, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30998477

RESUMEN

In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas de Magnetita , Procesamiento de Señales Asistido por Computador , Animales , Diagnóstico por Imagen/instrumentación , Diagnóstico por Imagen/métodos , Diseño de Equipo , Compuestos Férricos/farmacocinética , Masculino , Compuestos de Manganeso/farmacocinética , Tamaño de la Partícula , Ratas , Ratas Wistar , Distribución Tisular
8.
An Acad Bras Cienc ; 90(1): 425-438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641766

RESUMEN

This study evaluated the quality of heartwood and sapwood from mature trees of three species of Eucalyptus, by means of the qualification of their proportion, determination of basic and apparent density using non-destructive attenuation of gamma radiation technique and calculation of the density uniformity index. Six trees of each species (Eucalyptus grandis - 18 years old, Eucalyptus tereticornis - 35 years old and Corymbia citriodora - 28 years old) were used in the experimental program. The heartwood and sapwood were delimited by macroscopic analysis and the calculation of areas and percentage of heartwood and sapwood were performed using digital image. The uniformity index was calculated following methodology which numerically quantifies the dispersion of punctual density values of the wood around the mean density along the radius. The percentage of the heartwood was higher than the sapwood in all species studied. The density results showed no statistical difference between heartwood and sapwood. Differently from the density results, in all species studied there was statistical differences between uniformity indexes for heartwood and sapwood regions, making justifiable the inclusion of the density uniformity index as a quality parameter for Eucalyptus wood.


Asunto(s)
Eucalyptus/anatomía & histología , Rayos gamma , Madera/anatomía & histología , Brasil , Control de Calidad , Gravedad Específica , Madera/análisis
9.
An. acad. bras. ciênc ; 90(1): 425-438, Mar. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-886888

RESUMEN

ABSTRACT This study evaluated the quality of heartwood and sapwood from mature trees of three species of Eucalyptus, by means of the qualification of their proportion, determination of basic and apparent density using non-destructive attenuation of gamma radiation technique and calculation of the density uniformity index. Six trees of each species (Eucalyptus grandis - 18 years old, Eucalyptus tereticornis - 35 years old and Corymbia citriodora - 28 years old) were used in the experimental program. The heartwood and sapwood were delimited by macroscopic analysis and the calculation of areas and percentage of heartwood and sapwood were performed using digital image. The uniformity index was calculated following methodology which numerically quantifies the dispersion of punctual density values of the wood around the mean density along the radius. The percentage of the heartwood was higher than the sapwood in all species studied. The density results showed no statistical difference between heartwood and sapwood. Differently from the density results, in all species studied there was statistical differences between uniformity indexes for heartwood and sapwood regions, making justifiable the inclusion of the density uniformity index as a quality parameter for Eucalyptus wood.


Asunto(s)
Madera/anatomía & histología , Eucalyptus/anatomía & histología , Rayos gamma , Control de Calidad , Gravedad Específica , Madera/análisis , Brasil
10.
J Nanobiotechnology ; 15(1): 22, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327191

RESUMEN

BACKGROUND: We introduce and demonstrate that the AC biosusceptometry (ACB) technique enables real-time monitoring of magnetic nanoparticles (MNPs) in the bloodstream. We present an ACB system as a simple, portable, versatile, non-invasive, and accessible tool to study pharmacokinetic parameters of MNPs, such as circulation time, in real time. We synthesized and monitored manganese doped iron oxide nanoparticles in the bloodstream of Wistar rats using two different injection protocols. Aiming towards a translational approach, we also simultaneously evaluated cardiovascular parameters, including mean arterial pressure, heart rate, and episodes of arrhythmia in order to secure the well-being of all animals. RESULTS: We found that serial injections increased the circulation time compared with single injections. Immediately after each injection, we observed a transitory drop in arterial pressure, a small drop in heart rate, and no episodes of arrhythmia. Although some cardiovascular effects were observed, they were transitory and easily recovered in both protocols. CONCLUSIONS: These results indicate that the ACB system may be a valuable tool for in vivo, real-time MNP monitoring that allows associations with other techniques, such as pulsatile arterial pressure and electrocardiogram recordings, helping ensuring the protocol safety, which is a fundamental step towards clinical applications.


Asunto(s)
Tiempo de Circulación Sanguínea , Compuestos Férricos/sangre , Nanopartículas de Magnetita/química , Magnetometría/métodos , Animales , Arritmias Cardíacas/inducido químicamente , Presión Sanguínea , Electrocardiografía , Compuestos Férricos/farmacocinética , Frecuencia Cardíaca , Magnetismo , Masculino , Tamaño de la Partícula , Ratas , Ratas Wistar
11.
Nanomedicine ; 13(4): 1519-1529, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28214607

RESUMEN

We describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique. For quantification, we validated our results by comparing all of the data with electron spin resonance (ESR). The ACB had viable temporal resolution and accuracy to differentiate temporal parameters of liver accumulation, caused by vasculature extravasation and macrophages action. The biodistribution experiment showed different uptake profiles for different doses and injection protocols. Comparisons with the ESR system indicated a correlation index of 0.993. We present the ACB system as an accessible and versatile tool to monitor magnetic nanoparticles, allowing in vivo and real-time evaluations of distribution and quantitative assessments of particle concentrations.


Asunto(s)
Hígado/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Masculino , Ratas Wistar , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...