Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 35(31): 10079-10086, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30768278

RESUMEN

Microbubbles are used as ultrasound contrast agents in medical diagnosis and also have shown great promise in ultrasound-mediated therapy. However, short lifetime and broad size distribution of microbubbles limit their applications in therapy and imaging. Moreover, it is challenging to tailor the echogenic response of microbubbles to make them suitable for specific applications. To overcome these challenges, we use microfluidic flow-focusing to prepare monodisperse microbubbles with a mixture of a recombinant amphiphilic protein, oleosin, and a synthetic amphiphilic copolymer, Pluronic. We show that these microbubbles have superior uniformity and stability under ultrasonic stimulation compared to commercial agents. We also demonstrate that by using different Pluronics, the echogenic response of the microbubbles can be tailored. Our work shows the versatility of using the combination of microfluidics and protein/copolymer mixtures as a method of engineering microbubbles. This tunability could potentially be important and powerful in producing microbubble agents for theranostic applications.


Asunto(s)
Medios de Contraste/química , Microburbujas , Proteínas de Plantas/química , Poloxámero/química , Proteínas Recombinantes/química , Tensoactivos/química , Dispositivos Laboratorio en un Chip , Microfluídica/instrumentación , Microfluídica/métodos , Ultrasonografía
2.
ACS Appl Bio Mater ; 2(9): 4020-4026, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35021335

RESUMEN

Contrast-enhanced photoacoustics and ultrasonics are complementary methods of bioimaging. In this study, a flow-focusing junction microfluidic device is used for the generation of uniform microbubbles (<5 µm) for simultaneous enhancement of photoacoustic and ultrasound imaging. Microbubbles stabilized with a mixture of a recombinant protein and a synthetic amphiphilic block copolymer are functionalized with an FDA-approved photoacoustic dye, methylene blue (MetB). These microbubbles are uniform in size and stable. We show that the ultrasound and photoacoustic signals can be independently controlled by changing the concentration of MetB during microbubble preparation and the concentration of MetB-functionalized microbubbles in the probe suspension. We also perform animal tests to demonstrate the enhancement of ultrasound and acoustic signals upon injection of MetB-functionalized microbubbles in mice. The increase in the sonographic and photoacoustic signals is visibly obvious in the images. Taken together, MetB-functionalized microbubbles represent promising dual-mode ultrasound and photoacoustic imaging contrast agents for theranostic applications.

3.
Biomaterials ; 185: 348-359, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273834

RESUMEN

One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.


Asunto(s)
Caveolas/metabolismo , Portadores de Fármacos/metabolismo , Ferritinas/metabolismo , Nanopartículas/metabolismo , Superóxido Dismutasa/administración & dosificación , Animales , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Inmunoconjugados/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/farmacocinética
4.
Ultrasound Med Biol ; 44(12): 2441-2460, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30241729

RESUMEN

Microbubbles interact with ultrasound in various ways to enable their applications in ultrasound imaging and diagnosis. To generate high contrast and maximize therapeutic efficacy, microbubbles of high uniformity are required. Microfluidic technology, which enables precise control of small volumes of fluid at the sub-millimeter scale, has provided a versatile platform on which to produce highly uniform microbubbles for potential applications in ultrasound imaging and diagnosis. Here, we describe fundamental microfluidic principles and the most common types of microfluidic devices used to produce sub-10 µm microbubbles, appropriate for biomedical ultrasound. Bubbles can be engineered for specific applications by tailoring the bubble size, inner gas and shell composition and by functionalizing for additional imaging modalities, therapeutics or targeting ligands. To translate the laboratory-scale discoveries to widespread clinical use of these microfluidic-based microbubbles, increased bubble production is needed. We present various strategies recently developed to improve scale-up. We conclude this review by describing some outstanding problems in the field and presenting areas for future use of microfluidics in ultrasound.


Asunto(s)
Medios de Contraste , Aumento de la Imagen/métodos , Microburbujas , Microfluídica/métodos , Nanomedicina Teranóstica/métodos , Ultrasonografía/métodos , Humanos
5.
Protein Sci ; 27(10): 1755-1766, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30051936

RESUMEN

We characterize the encapsulation of supercharged green fluorescent protein, GFP(+36), by thermophilic ferritin from Archaeoglobus fulgidus (AfFtn). The AfFtn-GFP(+36) assembly is rapid, nearly stoichiometric, and robust. Using a more stably assembled mutant AfFtn, we show that encapsulation can occur in the presence of mostly assembled cages, in addition to encapsulation starting from AfFtn individual subunits. Assembly and encapsulation do not occur with non-supercharged GFP or the alternately supercharged GFP(-30), highlighting the role of complementary electrostatic interactions between the cargo and AfFtn cage interior. We also present a method for verifying protein-protein encapsulation, using nickel nitrilotriacetic acid agarose resin. AfFtn-supercharged protein host-guest complexes could find applications in enzyme studies, protein separations, and in vivo protein stabilization and targeted delivery.


Asunto(s)
Archaeoglobus fulgidus/química , Ferritinas/química , Proteínas Fluorescentes Verdes/química , Temperatura , Unión Proteica , Estabilidad Proteica
6.
Bioconjug Chem ; 29(4): 1209-1218, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29429330

RESUMEN

Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.


Asunto(s)
Azidas/química , Ferritinas/química , Colorantes Fluorescentes/química , Inmunoconjugados/química , Molécula 1 de Adhesión Intercelular/análisis , Imagen Óptica/métodos , Fenilalanina/análogos & derivados , Alquinos/síntesis química , Alquinos/química , Animales , Azidas/síntesis química , Química Clic/métodos , Ferritinas/síntesis química , Colorantes Fluorescentes/síntesis química , Humanos , Inflamación/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Ratones , Nanoestructuras/química , Fenilalanina/síntesis química , Fenilalanina/química
7.
Chem Sci ; 8(8): 5329-5334, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28970912

RESUMEN

The characterization of protein-nanoparticle assemblies in solution remains a challenge. We demonstrate a technique based on a graphene microelectrode for structural-functional analysis of model systems composed of nanoparticles enclosed in open-pore and closed-pore ferritin molecules. The method readily resolves the difference in accessibility of the enclosed nanoparticle for charge transfer and offers the prospect for quantitative analysis of pore-mediated transport, while shedding light on the spatial orientation of the protein subunits on the nanoparticle surface, faster and with higher sensitivity than conventional catalysis methods.

8.
Biochemistry ; 56(28): 3596-3606, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28682599

RESUMEN

Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/química , Ferritinas/química , Proteínas Arqueales/genética , Archaeoglobus fulgidus/genética , Cristalografía por Rayos X , Composición de Medicamentos , Ferritinas/genética , Oro/química , Nanopartículas del Metal/química , Modelos Moleculares , Mutación Puntual , Multimerización de Proteína , Electricidad Estática , Termodinámica
9.
J Inorg Biochem ; 174: 169-176, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28683348

RESUMEN

Ferritin protein cages provide templates for inorganic nanoparticle synthesis in more environmentally-friendly conditions. Thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) has been shown to encapsulate pre-formed 6-nm gold nanoparticles (AuNPs) and template their further growth within its 8-nm cavity. In this study, we explore whether using a gold complex with electrostatic complementarity to the anionic ferritin cavity can promote efficient seeded nanoparticle growth. We also compare wt AfFtn and a closed pore mutant AfFtn to explore whether the ferritin pores influence final AuNP size.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/química , Ferritinas/química , Oro/química , Nanopartículas del Metal/química , Electricidad Estática
10.
Bioconjug Chem ; 27(3): 628-37, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26718023

RESUMEN

Targeting nanocarriers to the endothelium, using affinity ligands to cell adhesion molecules such as ICAM-1 and PECAM-1, holds promise to improve the pharmacotherapy of many disease conditions. This approach capitalizes on the observation that antibody-targeted carriers of 100 nm and above accumulate in the pulmonary vasculature more effectively than free antibodies. Targeting of prospective nanocarriers in the 10-50 nm range, however, has not been studied. To address this intriguing issue, we conjugated monoclonal antibodies (Ab) to ICAM-1 and PECAM-1 or their single chain antigen-binding fragments (scFv) to ferritin nanoparticles (FNPs, size 12 nm), thereby producing Ab/FNPs and scFv/FNPs. Targeted FNPs retained their typical symmetric core-shell structure with sizes of 20-25 nm and ∼4-5 Ab (or ∼7-9 scFv) per particle. Ab/FNPs and scFv/FNPs, but not control IgG/FNPs, bound specifically to cells expressing target molecules and accumulated in the lungs after intravenous injection, with pulmonary targeting an order of magnitude higher than free Ab. Most intriguing, the targeting of Ab/FNPs to ICAM-1, but not PECAM-1, surpassed that of larger Ab/carriers targeted by the same ligand. These results indicate that (i) FNPs may provide a platform for targeting endothelial adhesion molecules with carriers in the 20 nm size range, which has not been previously reported; and (ii) ICAM-1 and PECAM-1 (known to localize in different domains of endothelial plasmalemma) differ in their accessibility to circulating objects of this size, common for blood components and nanocarriers.


Asunto(s)
Endotelio Vascular/metabolismo , Ferritinas/química , Nanopartículas , Animales , Microscopía Electrónica de Transmisión
11.
Methods Mol Biol ; 1252: 27-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25358770

RESUMEN

Understanding how inorganic nanoparticles interact with proteins is paramount to their safe and effective use in vivo. Ordered protein-inorganic nanomaterial assemblies will also enable the creation of patterned structures with useful physical properties. Thermophilic ferritin (tF) from Archaeoglobus fulgidus has unique structural features and self-assembly properties that facilitate stable but also reversible interaction with gold nanoparticles (AuNPs). In this chapter we describe how to express and purify tF and induce its assembly around AuNPs. We also describe methods for characterizing the tF-AuNP complex as well as templating NP growth within the protein cavity.


Asunto(s)
Composición de Medicamentos/métodos , Ferritinas/química , Nanopartículas/química , Archaea/química , Ferritinas/aislamiento & purificación , Oro/química , Nanopartículas/ultraestructura , Nanotecnología/métodos
12.
J Inorg Biochem ; 130: 59-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24176920

RESUMEN

The study of interactions between proteins and nanoparticles is important to advancing applications of nanoparticles in biology, medicine, and materials science. Here, we report the encapsulation of a 5-nm diameter gold nanoparticle (AuNP) by thermophilic ferritin (tF), achieved in nearly quantitative yield under mild conditions that preserved the secondary structure, ferroxidase activity, and thermal stability of the native, 4-helix bundle protein subunits. Chromatography-based assays determined that stable protein assembly around AuNPs occurred on long time scales (~48h) and was reversible. Apparent association constants were determined at 25°C for equilibrated tF-BSPP-capped AuNP samples (KA=(2.1±0.4)×10(78)M(-11)) and compared favorably to salt-assembled tF samples (KA=(2.2±0.5)×10(68)M(-11)) at the same protein concentration (0.3mg/mL). Finally, addition of gold ions and mild reducing agent to the tF-AuNP assembly produced 8-nm diameter AuNPs with surface plasmon resonance band unchanged at 520nm, indicative of templating by the protein shell.


Asunto(s)
Ferritinas/química , Oro/química , Nanopartículas del Metal/química , Proteínas/química , Catálisis , Dicroismo Circular , Ferritinas/metabolismo , Conformación Proteica , Proteínas/metabolismo , Resonancia por Plasmón de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...