Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Rep ; 43(3): 113955, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507414

RESUMEN

Epicardial adipose tissue (eAT) is a metabolically active fat depot that has been associated with a wide array of cardiac homeostatic functions and cardiometabolic diseases. A full understanding of its diverse physiological and pathological roles is hindered by the dearth of animal models. Here, we show, in the heart of an ectothermic teleost, the zebrafish, the existence of a fat depot localized underneath the epicardium, originating from the epicardium and exhibiting the molecular signature of beige adipocytes. Moreover, a subset of adipocytes within this cardiac fat tissue exhibits primitive thermogenic potential. Transcriptomic profiling and cross-species analysis revealed elevated glycolytic and cardiac homeostatic gene expression with downregulated obesity and inflammatory hallmarks in the teleost eAT compared to that of lean aged humans. Our findings unveil epicardium-derived beige fat in the heart of an ectotherm considered to possess solely white adipocytes for energy storage and identify pathways that may underlie age-driven remodeling of human eAT.


Asunto(s)
Tejido Adiposo Beige , Pez Cebra , Animales , Humanos , Anciano , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Epicárdico , Tejido Adiposo/metabolismo , Pericardio/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo
2.
Hypertension ; 80(4): 771-782, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36715011

RESUMEN

BACKGROUND: Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. Upregulation of COX2 (cyclooxygenase 2) and prostaglandin E2 (PGE2) was linked to podocyte damage in GH. We explored the potential renoprotective effects of either separate or combined pharmacological blockade of EP2 (PGE2 receptor type 2) and EP4 (PGE2 receptor type 4) in GH. METHODS: We conducted in vivo studies in a transgenic zebrafish model (Tg[fabp10a:gc-EGFP]) suitable for analysis of glomerular filtration barrier function and a genetic rat model with GH, albuminuria, and upregulation of PGE2. Similar pharmacological interventions and primary outcome analysis on albuminuria phenotype development were conducted in both model systems. RESULTS: Stimulation of zebrafish embryos with PGE2 induced an albuminuria-like phenotype, thus mimicking the suggested PGE2 effects on glomerular filtration barrier dysfunction. Both separate and combined blockade of EP2 and EP4 reduced albuminuria phenotypes in zebrafish and rat models. A significant correlation between albuminuria and podocyte damage in electron microscopy imaging was identified in the rat model. Dual blockade of both receptors showed a pronounced synergistic suppression of albuminuria. Importantly, this occurred without changes in arterial blood pressure, glomerular filtration rate, or tissue oxygenation in magnetic resonance imaging, while RNA sequencing analysis implicated a potential role of circadian clock genes. CONCLUSIONS: Our findings confirm a role of PGE2 in the development of albuminuria in GH and support the renoprotective potential of combined pharmacological blockade of EP2 and EP4 receptors. These data support further translational research to explore this therapeutic option and a possible role of circadian clock genes.


Asunto(s)
Subtipo EP2 de Receptores de Prostaglandina E , Pez Cebra , Animales , Ratas , Pez Cebra/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Albuminuria , Dinoprostona , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Proteínas Portadoras , Ciclooxigenasa 2/metabolismo
3.
J Gen Physiol ; 154(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36256908

RESUMEN

The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C. We next asked if TMEM150C is necessary for the normal mechanosensitivity of cutaneous sensory neurons. We used an available mouse model in which the Tmem150c locus was disrupted through the insertion of a LacZ cassette with a splice acceptor that should lead to transcript truncation. Analysis of these mice indicated that ablation of the Tmem150c gene was not complete in sensory neurons of the dorsal root ganglia (DRG). Using a CRISPR/Cas9 strategy, we made a second mouse model in which a large part of the Tmem150c gene was deleted and established that these Tmem150c-/- mice completely lack TMEM150C protein in the DRGs. We used an ex vivo skin nerve preparation to characterize the mechanosenstivity of mechanoreceptors and nociceptors in the glabrous skin of the Tmem150c-/- mice. We found no quantitative alterations in the physiological properties of any type of cutaneous sensory fiber in Tmem150c-/- mice. Since it has been claimed that TMEM150C is required for normal proprioceptor function, we made a quantitative analysis of locomotion in Tmem150c-/- mice. Here again, we found no indication that there was altered gait in Tmem150c-/- mice compared to wild-type controls. In summary, we conclude that existing mouse models that have been used to investigate TMEM150C function in vivo are problematic. Furthermore, we could find no evidence that TMEM150C forms a mechanosensitive channel or that it is necessary for the normal mechanosensitivity of cutaneous sensory neurons.


Asunto(s)
Ganglios Espinales , Mecanotransducción Celular , Ratones , Animales , Mecanotransducción Celular/fisiología , Ganglios Espinales/metabolismo , Mecanorreceptores/metabolismo , Células Receptoras Sensoriales/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
4.
Nature ; 599(7884): 283-289, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517409

RESUMEN

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/patología , COVID-19/virología , Senescencia Celular/efectos de los fármacos , Terapia Molecular Dirigida , SARS-CoV-2/patogenicidad , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Animales , COVID-19/complicaciones , Línea Celular , Cricetinae , Dasatinib/farmacología , Dasatinib/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Quercetina/farmacología , Quercetina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Trombosis/complicaciones , Trombosis/inmunología , Trombosis/metabolismo
5.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463328

RESUMEN

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.


Asunto(s)
Encéfalo/embriología , Genes Modificadores/fisiología , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Cilios/metabolismo , Modelos Animales de Enfermedad , Cardiopatías Congénitas/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mutación , Células Neuroepiteliales/metabolismo , Penetrancia , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Securina/genética , Securina/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 12(5): 1249-1265, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212535

RESUMEN

BACKGROUND: Aging is associated with a progressive reduction in cellular function leading to poor health and loss of physical performance. Mitochondrial dysfunction is one of the hallmarks of aging; hence, interventions targeting mitochondrial dysfunction have the potential to provide preventive and therapeutic benefits to elderly individuals. Meta-analyses of age-related gene expression profiles showed that the expression of Ahnak1, a protein regulating several signal-transduction pathways including metabolic homeostasis, is increased with age, which is associated with low VO2MAX and poor muscle fitness. However, the role of Ahnak1 in the aging process remained unknown. Here, we investigated the age-related role of Ahnak1 in murine exercise capacity, mitochondrial function, and contractile function of cardiac and skeletal muscles. METHODS: We employed 15- to 16-month-old female and male Ahnak1-knockout (Ahnak1-KO) and wild-type (WT) mice and performed morphometric, biochemical, and bioenergetics assays to evaluate the effects of Ahnak1 on exercise capacity and mitochondrial morphology and function in cardiomyocytes and tibialis anterior (TA) muscle. A human left ventricular (LV) cardiomyocyte cell line (AC16) was used to investigate the direct role of Ahnak1 in cardiomyocytes. RESULTS: We found that the level of Ahnak1 protein is significantly up-regulated with age in the murine LV (1.9-fold) and TA (1.8-fold) tissues. The suppression of Ahnak1 was associated with improved exercise tolerance, as all aged adult Ahnak1-KO mice (100%) successfully completed the running programme, whereas approximately 31% male and 8% female WT mice could maintain the required running speed and distance. Transmission electron microscopic studies showed that LV and TA tissue specimens of aged adult Ahnak1-KO of both sexes have significantly more enlarged/elongated mitochondria and less small mitochondria compared with WT littermates (P < 0.01 and P < 0.001, respectively) at basal level. Further, we observed a shift in mitochondrial fission/fusion balance towards fusion in cardiomyocytes and TA muscle from aged adult Ahnak1-KO mice. The maximal and reserve respiratory capacities were significantly higher in cardiomyocytes from aged adult Ahnak1-KO mice compared with the WT counterparts (P < 0.05 and P < 0.01, respectively). Cardiomyocyte contractility and fatigue resistance of TA muscles were significantly increased in Ahnak1-KO mice of both sexes, compared with the WT groups. In vitro studies using AC16 cells have confirmed that the alteration of mitochondrial function is indeed a direct effect of Ahnak1. Finally, we presented Ahnak1 as a novel cardiac mitochondrial membrane-associated protein. CONCLUSIONS: Our data suggest that Ahnak1 is involved in age-related cardiac and skeletal muscle dysfunction and could therefore serve as a promising therapeutical target.


Asunto(s)
Mitocondrias , Músculo Esquelético , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Dinámicas Mitocondriales , Contracción Muscular , Músculo Esquelético/metabolismo
7.
Chem Commun (Camb) ; 56(62): 8830-8833, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32749391

RESUMEN

Recent structural studies show distinct morphologies for the fibrils of Aß(1-42) and Aß(1-40), which are believed not to co-fibrillize. We describe here a novel, structurally-uniform 1 : 1 mixed fibrillar species, which differs from both pure fibrils. It forms preferentially even when Aß(1-42) : Aß(1-40) peptides are mixed in a non-stoichiometric ratio.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Agregado de Proteínas , Modelos Moleculares , Estructura Secundaria de Proteína
8.
FASEB J ; 34(8): 10699-10719, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32584506

RESUMEN

Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel ß subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.


Asunto(s)
Aclorhidria/genética , Aclorhidria/mortalidad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/mortalidad , Canales de Potasio con Entrada de Voltaje/genética , Animales , Bacteroides/crecimiento & desarrollo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/mortalidad , Femenino , Ácido Gástrico/metabolismo , Microbioma Gastrointestinal/genética , Eliminación de Gen , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Riesgo
9.
Sci Rep ; 9(1): 6768, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043663

RESUMEN

The Coxsackievirus and adenovirus receptor (CAR) is essential for normal electrical conductance in the heart, but its role in the postnatal brain is largely unknown. Using brain specific CAR knockout mice (KO), we discovered an unexpected role of CAR in neuronal communication. This includes increased basic synaptic transmission at hippocampal Schaffer collaterals, resistance to fatigue, and enhanced long-term potentiation. Spontaneous neurotransmitter release and speed of endocytosis are increased in KOs, accompanied by increased expression of the exocytosis associated calcium sensor synaptotagmin 2. Using proximity proteomics and binding studies, we link CAR to the exocytosis machinery as it associates with syntenin and synaptobrevin/VAMP2 at the synapse. Increased synaptic function does not cause adverse effects in KO mice, as behavior and learning are unaffected. Thus, unlike the connexin-dependent suppression of atrioventricular conduction in the cardiac knockout, communication in the CAR deficient brain is improved, suggesting a role for CAR in presynaptic processes.


Asunto(s)
Encéfalo/fisiología , Adhesión Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/fisiología , Exocitosis , Sinapsis/fisiología , Transmisión Sináptica , Vesículas Sinápticas/fisiología , Animales , Conducta Animal , Potenciación a Largo Plazo , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología
10.
Elife ; 82019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30900988

RESUMEN

Unraveling the genetic susceptibility of complex diseases such as chronic kidney disease remains challenging. Here, we used inbred rat models of kidney damage associated with elevated blood pressure for the comprehensive analysis of a major albuminuria susceptibility locus detected in these models. We characterized its genomic architecture by congenic substitution mapping, targeted next-generation sequencing, and compartment-specific RNA sequencing analysis in isolated glomeruli. This led to prioritization of transmembrane protein Tmem63c as a novel potential target. Tmem63c is differentially expressed in glomeruli of allele-specific rat models during onset of albuminuria. Patients with focal segmental glomerulosclerosis exhibited specific TMEM63C loss in podocytes. Functional analysis in zebrafish revealed a role for tmem63c in mediating the glomerular filtration barrier function. Our data demonstrate that integrative analysis of the genomic architecture of a complex trait locus is a powerful tool for identification of new targets such as Tmem63c for further translational investigation.


Asunto(s)
Sitios Genéticos , Predisposición Genética a la Enfermedad , Hipertensión Renal/fisiopatología , Hipertensión/complicaciones , Herencia Multifactorial , Nefritis/fisiopatología , Albuminuria/patología , Animales , Modelos Animales de Enfermedad , Humanos , Hipertensión Renal/patología , Nefritis/patología , Ratas , Pez Cebra
11.
Mol Cell ; 71(5): 675-688.e6, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193095

RESUMEN

Self-propagating, amyloidogenic mutant huntingtin (mHTT) aggregates may drive progression of Huntington's disease (HD). Here, we report the development of a FRET-based mHTT aggregate seeding (FRASE) assay that enables the quantification of mHTT seeding activity (HSA) in complex biosamples from HD patients and disease models. Application of the FRASE assay revealed HSA in brain homogenates of presymptomatic HD transgenic and knockin mice and its progressive increase with phenotypic changes, suggesting that HSA quantitatively tracks disease progression. Biochemical investigations of mouse brain homogenates demonstrated that small, rather than large, mHTT structures are responsible for the HSA measured in FRASE assays. Finally, we assessed the neurotoxicity of mHTT seeds in an inducible Drosophila model transgenic for HTTex1. We found a strong correlation between the HSA measured in adult neurons and the increased mortality of transgenic HD flies, indicating that FRASE assays detect disease-relevant, neurotoxic, mHTT structures with severe phenotypic consequences in vivo.


Asunto(s)
Biomarcadores/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila/genética , Drosophila/metabolismo , Femenino , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
Dis Model Mech ; 11(2)2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361518

RESUMEN

CAR-like membrane protein (CLMP), an immunoglobulin cell adhesion molecule (IgCAM), has been implicated in congenital short-bowel syndrome in humans, a condition with high mortality for which there is currently no cure. We therefore studied the function of CLMP in a Clmp-deficient mouse model. Although we found that the levels of mRNAs encoding Connexin43 or Connexin45 were not or were only marginally affected, respectively, by Clmp deficiency, the absence of CLMP caused a severe reduction of both proteins in smooth muscle cells of the intestine and of Connexin43 in the ureter. Analysis of calcium signaling revealed a disordered cell-cell communication between smooth muscle cells, which in turn induced an impaired and uncoordinated motility of the intestine and the ureter. Consequently, insufficient transport of chyme and urine caused a fatal delay to thrive, a high rate of mortality, and provoked a severe hydronephrosis in CLMP knockouts. Neurotransmission and the capability of smooth muscle cells to contract in ring preparations of the intestine were not altered. Physical obstructions were not detectable and an overall normal histology in the intestine as well as in the ureter was observed, except for a slight hypertrophy of smooth muscle layers. Deletion of Clmp did not lead to a reduced length of the intestine as shown for the human CLMP gene but resulted in gut malrotations. In sum, the absence of CLMP caused functional obstructions in the intestinal tract and ureter by impaired peristaltic contractions most likely due to a lack of gap-junctional communication between smooth muscle cells.


Asunto(s)
Conexina 43/metabolismo , Conexinas/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Intestinos/fisiología , Contracción Muscular , Músculo Liso/fisiología , Uréter/fisiología , Animales , Peso Corporal , Señalización del Calcio , Comunicación Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/deficiencia , Femenino , Humanos , Hidronefrosis/patología , Intestinos/citología , Intestinos/ultraestructura , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Peristaltismo , Análisis de Supervivencia , Transmisión Sináptica
13.
J Biol Chem ; 292(52): 21490-21503, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29123028

RESUMEN

The Ig-like cell adhesion molecule (IgCAM) BT-IgSF (brain- and testis-specific Ig superfamily protein) plays a major role in male fertility in mice. However, the molecular mechanism by which BT-IgSF supports fertility is unclear. Here, we found that it is localized in Sertoli cells at the blood-testis barrier (BTB) and at the apical ectoplasmic specialization. The absence of BT-IgSF in Sertoli cells in both global and conditional mouse mutants (i.e. AMHCre and Rosa26CreERT2 lines) resulted in male infertility, atrophic testes with vacuolation, azoospermia, and spermatogenesis arrest. Although transcripts of junctional proteins such as connexin43, ZO-1, occludin, and claudin11 were up-regulated in the absence of BT-IgSF, the functional integrity of the BTB was impaired, as revealed by injection of a BTB-impermeable component into the testes under in vivo conditions. Disruption of the BTB coincided with mislocalization of connexin43, which was present throughout the seminiferous epithelium and not restricted to the BTB as in wild-type tissues, suggesting impaired cell-cell communication in the BT-IgSF-KO mice. Because EM images revealed a normal BTB structure between Sertoli cells in the BT-IgSF-KO mice, we conclude that infertility in these mice is most likely caused by a functionally impaired BTB. In summary, our results indicate that BT-IgSF is expressed at the BTB and is required for male fertility by supporting the functional integrity of the BTB.


Asunto(s)
Barrera Hematotesticular/fisiología , Inmunoglobulinas/fisiología , Espermatogénesis/genética , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/metabolismo , Conexina 43/metabolismo , Fertilidad/fisiología , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ocludina/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
14.
Nat Commun ; 8: 15258, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561061

RESUMEN

The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60-Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Liposomas , Proteínas Mitocondriales/química , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
15.
J Cachexia Sarcopenia Muscle ; 7(2): 165-80, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27493870

RESUMEN

BACKGROUND: The Muscle-specific RING-finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. METHODS: MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real-time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass-spectrometry were used for mechanistic analyses. RESULTS: DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3-deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. CONCLUSIONS: The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo.

16.
EMBO J ; 34(10): 1417-33, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25828096

RESUMEN

Key transcription factors control the gene expression program in mature pancreatic ß-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic ß-cells. We used Insm1 ablation in mature ß-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing ß-cells markedly differ from the ones identified in the adult. In particular, adult mutant ß-cells resemble immature ß-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant ß-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which ß-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in ß-cells, and disruption of this network results in functional failure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Genotipo , Factor Nuclear 3-beta del Hepatocito/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteínas Represoras , Factores de Transcripción/genética
17.
Development ; 142(6): 1125-36, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25758223

RESUMEN

Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes/fisiología , Morfogénesis/fisiología , Placentación , Factores de Transcripción/metabolismo , Trofoblastos/fisiología , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , Femenino , Técnica del Anticuerpo Fluorescente , Redes Reguladoras de Genes/genética , Humanos , Inmunohistoquímica , Análisis por Micromatrices , Microscopía Electrónica , Embarazo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Sci Rep ; 5: 8427, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25673047

RESUMEN

Magnetic resonance (MR) methods to detect and quantify fluorine ((19)F) nuclei provide the opportunity to study the fate of cellular transplants in vivo. Cells are typically labeled with (19)F nanoparticles, introduced into living organisms and tracked by (19)F MR methods. Background-free imaging and quantification of cell numbers are amongst the strengths of (19)F MR-based cell tracking but challenges pertaining to signal sensitivity and cell detection exist. In this study we aimed to overcome these limitations by manipulating the aminophospholipid composition of (19)F nanoparticles in order to promote their uptake by dendritic cells (DCs). As critical components of biological membranes, phosphatidylethanolamines (PE) were studied. Both microscopy and MR spectroscopy methods revealed a striking (at least one order of magnitude) increase in cytoplasmic uptake of (19)F nanoparticles in DCs following enrichment with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). The impact of enriching (19)F nanoparticles with PE on DC migration was also investigated. By manipulating the nanoparticle composition and as a result the cellular uptake we provide here one way of boosting (19)F signal per cell in order to overcome some of the limitations related to (19)F MR signal sensitivity. The boost in signal is ultimately necessary to detect and track cells in vivo.


Asunto(s)
Rastreo Celular/métodos , Flúor/química , Espectroscopía de Resonancia Magnética , Nanopartículas/química , Fosfatidiletanolaminas/química , Animales , Transporte Biológico , Movimiento Celular , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Espacio Intracelular/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ratones , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Espectroscopía de Protones por Resonancia Magnética
19.
In Vitro Cell Dev Biol Anim ; 51(2): 183-91, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25270685

RESUMEN

In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.


Asunto(s)
Sangre Fetal/citología , Hepatocitos/fisiología , Células Madre/citología , Animales , Biomarcadores/análisis , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Técnicas de Cocultivo , Conexina 43/genética , Conexinas/genética , Medios de Cultivo Condicionados/farmacología , Expresión Génica , Hepatocitos/citología , Humanos , Ratones , Análisis por Micromatrices , Microscopía Electrónica , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/fisiología , Proteína beta1 de Unión Comunicante
20.
J Am Coll Cardiol ; 63(6): 549-59, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24291282

RESUMEN

OBJECTIVES: The aim of this study was to investigate the modulatory effect of the coxsackie and adenovirus receptor (CAR) on ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. BACKGROUND: A heritable component in the risk of ventricular fibrillation during myocardial infarction has been well established. A recent genome-wide association study of ventricular fibrillation during acute myocardial infarction led to the identification of a locus on chromosome 21q21 (rs2824292) in the vicinity of the CXADR gene. CXADR encodes the CAR, a cell adhesion molecule predominantly located at the intercalated disks of the cardiomyocyte. METHODS: The correlation between CAR transcript levels and rs2824292 genotype was investigated in human left ventricular samples. Electrophysiological studies and molecular analyses were performed using CAR haploinsufficient (CAR⁺/⁻) mice. RESULTS: In human left ventricular samples, the risk allele at the chr21q21 genome-wide association study locus was associated with lower CXADR messenger ribonucleic acid levels, suggesting that decreased cardiac levels of CAR predispose to ischemia-induced ventricular fibrillation. Hearts from CAR⁺/⁻ mice displayed slowing of ventricular conduction in addition to an earlier onset of ventricular arrhythmias during the early phase of acute myocardial ischemia after ligation of the left anterior descending artery. Expression and distribution of connexin 43 were unaffected, but CAR⁺/⁻ hearts displayed increased arrhythmia susceptibility on pharmacological electrical uncoupling. Patch-clamp analysis of isolated CAR⁺/⁻ myocytes showed reduced sodium current magnitude specifically at the intercalated disk. Moreover, CAR coprecipitated with NaV1.5 in vitro, suggesting that CAR affects sodium channel function through a physical interaction with NaV1.5. CONCLUSIONS: CAR is a novel modifier of ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. Genetic determinants of arrhythmia susceptibility (such as CAR) may constitute future targets for risk stratification of potentially lethal ventricular arrhythmias in patients with coronary artery disease.


Asunto(s)
Arritmias Cardíacas/etiología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/fisiología , Sistema de Conducción Cardíaco/fisiopatología , Isquemia Miocárdica/metabolismo , Función Ventricular , Animales , Carbenoxolona , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...