Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 1670-1682, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222608

RESUMEN

Surface modification by plasmonic metals is one of the most promising ways to increase the band-to-band excitonic recombination in zinc oxide (ZnO) nanostructures. However, the metal-induced modulation of the UV light emission depends strongly on the production method, making it difficult to recognize the mechanism responsible for charge/energy transfer between the semiconductor and a metal. Therefore, in this study, the ZnO/Ag and Au hybrids were produced by the same, fully controlled experimental approach. ZnO nanotubes (NTs), fabricated by a template-assisted ALD synthesis, were coated by metals of variable mass thickness (1-6.5 nm thick) using the electron beam PVD technique. The deposited Ag and Au metals grew in the form of island films made of metallic nanoparticles (NPs). The size of the NPs and their size distribution decreased, while the spacing between the NPs increased as the mass of the deposited Ag and Au metals decreased. Systematic optical analysis allowed us to unravel a specific role of surface defects in ZnO NTs in the processes occurring at the ZnO/metal interface. The enhancement of the UV emission was observed only in the ZnO/Ag system. The phenomena were tentatively ascribed to the coupling between the defect-related (DL) excitonic recombination in ZnO and the localized surface plasmon resonance (LSPR) at the Ag NPs. However, the enhancement of UV light was observed only for a narrow range of Ag NP dimensions, indicating the great importance of the size and internanoparticle spacing in the plasmonic coupling. Moreover, the enhancement factors were much stronger in ZnO NTs characterized by robust DL-related emission before metal deposition. In contrast to Ag, Au coatings caused quenching of the UV emission from ZnO NTs, which was attributed to the uncoupling between the DL and LSP energies in this system and a possible formation of the ohmic contact between the Au metal and the ZnO.

2.
Phys Chem Chem Phys ; 24(34): 20506-20516, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35993759

RESUMEN

Atomic layer deposition (ALD) was used to deposit a protective overcoating (Al2O3) on an industrially relevant Co-based Fischer-Tropsch catalyst. A trimethylaluminium/water (TMA/H2O) ALD process was used to prepare ∼0.7-2.2 nm overcoatings on an incipient wetness impregnated Co-Pt/TiO2 catalyst. A diffusion-reaction differential equation model was used to predict precursor transport and the resulting deposited overcoating surface coverage inside a catalyst particle. The model was validated against transmission electron (TEM) and scanning electron (SEM) microscopy studies. The prepared model utilised catalyst physical properties and ALD process parameters to estimate achieved overcoating thickness for 20 and 30 deposition cycles (1.36 and 2.04 nm respectively). The TEM analysis supported these estimates, with 1.29 ± 0.16 and 2.15 ± 0.29 nm average layer thicknesses. In addition to layer thickness estimation, the model was used to predict overcoating penetration into the porous catalyst. The model estimated a penetration depth of ∼19 µm, and cross-sectional scanning electron microscopy supported the prediction with a deepest penetration of 15-18 µm. The model successfully estimated the deepest penetration, however, the microscopy study showed penetration depth fluctuation between 0-18 µm, having an average of 9.6 µm.

3.
ACS Omega ; 7(9): 7725-7736, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284741

RESUMEN

Atomic layer deposition (ALD) and molecular layer deposition (MLD) methods were used to prepare overcoatings on a cobalt-based Fischer-Tropsch catalyst. A Co-Pt-Si/γ-Al2O3 catalyst (21.4 wt % Co, 0.2 wt % Pt, and 1.6 wt % Si) prepared by incipient wetness impregnation was ALD overcoated with 30-40 cycles of trimethylaluminum (TMA) and water, followed by temperature treatment (420 °C) in an inert nitrogen atmosphere. MLD-overcoated samples with corresponding film thicknesses were prepared by using TMA and ethylene glycol, followed by temperature treatment (400 °C) in an oxidative synthetic air atmosphere. The ALD catalyst (40 deposition cycles) had a positive activity effect upon moderate water addition (P H2O/P H2 = 0.42), and compared with a non-overcoated catalyst, it showed resistance to irreversible deactivation after co-fed water conditions. In addition, MLD overcoatings had a positive effect on the catalyst activity upon moderate water addition. However, compared with a non-overcoated catalyst, only the 10-cycle MLD-overcoated catalyst retained increased activity throughout high added water conditions (P H2O/P H2 = 0.71). All catalyst variations exhibited irreversible deactivation under high added water conditions.

4.
ACS Omega ; 6(27): 17545-17554, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34278140

RESUMEN

Because of its high conductivity and intrinsic stability, poly(3,4-ethylenedioxythiophene (PEDOT) has gained great attention both in academic research and industry over the years. In this study, we used the oxidative molecular layer deposition (oMLD) technique to deposit PEDOT from 3,4-ethylenedioxythiophene (EDOT) and a new inorganic oxidizing agent, rhenium pentachloride (ReCl5). We extensively characterized the properties of the films by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Raman, and conductivity measurements. The oMLD of polymers is based on the sequential adsorption of the monomer and its oxidation-induced polymerization. However, oMLD has been scarcely used because of the challenge of finding a suitable combination of volatile, reactive, and stable organic monomers applicable at high temperatures. ReCl5 showed promising properties in oMLD because it has high thermal stability and high oxidizing ability for EDOT. PEDOT films were deposited at temperatures of 125-200 °C. EDS and XPS measurements showed that the as-deposited films contained residues of rhenium and chlorine, which could be removed by rinsing the films with deionized water. The polymer films were transparent in the visible region and showed relatively high electrical conductivities within the 2-2000 S cm-1 range.

5.
Materials (Basel) ; 12(19)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31575000

RESUMEN

The structural and optical evolution of the ZnS thin films prepared by atomic layer deposition (ALD) from the diethylzinc (DEZ) and 1,5-pentanedithiol (PDT) as zinc and sulfur precursors was studied. A deposited ZnS layer (of about 60 nm) is amorphous, with a significant S excess. After annealing, the stoichiometry improved for annealing temperatures ≥400 °C and annealing time ≥2 h, and 1:1 stoichiometry was obtained when annealed at 500 °C for 4 h. ZnS crystallized into small crystallites (1-7 nm) with cubic sphalerite structure, which remained stable under the applied annealing conditions. The size of the crystallites (D) tended to decrease with annealing temperature, in agreement with the EDS data (decreased content of both S and Zn with annealing temperature); the D for samples annealed at 600 °C (for the time ≤2 h) was always the smallest. Both reflectivity and ellipsometric spectra showed characteristics typical for quantum confinement (distinct dips/peaks in UV spectral region). It can thus be concluded that the amorphous ZnS layer obtained at a relatively low temperature (150 °C) from organic S precursor transformed into the layers built of small ZnS nanocrystals of cubic structure after annealing at a temperature range of 300-600 °C under Ar atmosphere.

6.
ACS Omega ; 3(7): 7141-7149, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458876

RESUMEN

Novel coating materials are constantly needed for current and future applications in the area of microelectronics, biocompatible materials, and energy-related devices. Molecular layer deposition (MLD) is answering this cry and is an increasingly important coating method for organic and hybrid organic-inorganic thin films. In this study, we have focused on hybrid inorganic-organic coatings, based on trimethylaluminum, monofunctional aromatic precursors, and ring-opening reactions with ozone. We present the MLD processes, where the films are produced with trimethylaluminum, one of the three aromatic precursors (phenol, 3-(trifluoromethyl)phenol, and 2-fluoro-4-(trifluoromethyl)benzaldehyde), ozone, and the fourth precursor, hydrogen peroxide. According to the in situ Fourier-transform infrared spectroscopy measurements, the hydrogen peroxide reacts with the surface carboxylic acid group, forming a peroxyacid structure (C(O)-O-OH), in the case of all three processes. In addition, molecular modeling for the processes with three different aromatic precursors was carried out. When combining these modeling results with the experimental research data, new interesting aspects of the film growth, reactions, and properties are exploited.

7.
Philos Trans A Math Phys Eng Sci ; 376(2112)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29277735

RESUMEN

In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO2 using AP-LTO® 330 and ozone (O3) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO2 film deposition rate was dependent on the temperature varying within 1.5-2.2 Å cycle-1 in the temperature range of 80-350°C, respectively. The low-temperature SiO2 process that resulted was combined with the conventional trimethyl aluminium + H2O process in order to prepare thin multilayer nanolaminates on self-standing CNF films. One to six stacks of SiO2/Al2O3 were deposited on the CNF films, with individual layer thicknesses of 3.7 nm and 2.6 nm, respectively, combined with a 5 nm protective SiO2 layer as the top layer. The performance of the multilayer hybrid nanolaminate structures was evaluated with respect to the oxygen and water vapour transmission rates. Six stacks of SiO2/Al2O with a total thickness of approximately 35 nm efficiently prevented oxygen and water molecules from interacting with the CNF film. The oxygen transmission rates analysed at 80% RH decreased from the value for plain CNF film of 130 ml m-2 d-1 to 0.15 ml m-2 d-1, whereas the water transmission rates lowered from 630 ± 50 g m-2 d-1 down to 90 ± 40 g m-2 d-1This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

8.
Langmuir ; 33(38): 9657-9665, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28838240

RESUMEN

Molecular layer deposition (MLD) is an increasingly used deposition technique for producing thin coatings consisting of purely organic or hybrid inorganic-organic materials. When organic materials are prepared, low deposition temperatures are often required to avoid decomposition, thus causing problems with low vapor pressure precursors. Monofunctional compounds have higher vapor pressures than traditional bi- or trifunctional MLD precursors, but do not offer the required functional groups for continuing the MLD growth in subsequent deposition cycles. In this study, we have used high vapor pressure monofunctional aromatic precursors in combination with ozone-triggered ring-opening reactions to achieve sustained sequential growth. MLD depositions were carried out by using three different aromatic precursors in an ABC sequence, namely with TMA + phenol + O3, TMA + 3-(trifluoromethyl)phenol + O3, and TMA + 2-fluoro-4-(trifluoromethyl)benzaldehyde + O3. Furthermore, the effect of hydrogen peroxide as a fourth step was evaluated for all studied processes resulting in a four-precursor ABCD sequence. According to the characterization results by ellipsometry, infrared spectroscopy, and X-ray reflectivity, self-limiting MLD processes could be obtained between 75 and 150 °C with each of the three aromatic precursors. In all cases, the GPC (growth per cycle) decreased with increasing temperature. In situ infrared spectroscopy indicated that ring-opening reactions occurred in each ABC sequence. Compositional analysis using time-of-flight elastic recoil detection indicated that fluorine could be incorporated into the film when 3-(trifluoromethyl)phenol and 2-fluoro-4-(trifluoromethyl)benzaldehyde were used as precursors.

9.
Appl Opt ; 52(24): 5949-56, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24084996

RESUMEN

To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 µm and depth of 300 µm. The film thickness is ∼20 nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles <1.3°. When a geometrical shadowing effect due to occultation by a ridge existing on the sidewalls is taken into account, the observed reflectivity becomes well represented by the modified theoretical curve. An estimated surface micro roughness of ∼1 nm rms is consistent with atomic force microscope measurements of the sidewalls.

11.
Langmuir ; 21(16): 7321-5, 2005 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16042461

RESUMEN

Reactions during the atomic layer deposition (ALD) process of ZrO(2) from Cp(2)Zr(CH(3))(2) and deuterated water as precursors were studied with a quadrupole mass spectrometer (QMS) at 210-440 degrees C. The detected reaction byproducts were CpD (m/z = 67) and CH(3)D (m/z = 17). Almost all (90%) of the CH(3) ligands were released during the Cp(2)Zr(CH(3))(2) precursor pulse because of exchange reactions with the OD-terminated surface, and the rest, during the D(2)O pulse. About 40% of the CpD was released during the metal precursor pulse, and 60%, during the D(2)O pulse. ALD-type self-limiting growth was confirmed from 210 to 400 degrees C. However, below 300 degrees C the growth rate was low. Precursor decomposition affected the film growth mechanism at temperatures exceeding 400 degrees C.

12.
Anal Bioanal Chem ; 382(8): 1791-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16021420

RESUMEN

This review introduces the possibilities of ion-beam techniques for the analysis of thin films and thin-film structures processed by atomic layer deposition (ALD). The characteristic features of ALD are also presented. The analytical techniques discussed include RBS, NRA and ERDA with its variants, viz. the TOF-ERDA and HI-ERDA. The thin film examples are taken from flat-panel display technology (TFEL structures) and the semiconductor industry (high-k insulators).


Asunto(s)
Membranas Artificiales , Nanotecnología/métodos , Análisis Espectral/métodos , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...