Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 987, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307877

RESUMEN

Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Niño , Humanos , Ratones , Neoplasias Cerebelosas/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Oncogenes , Fosforilación , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
3.
Nat Commun ; 14(1): 3887, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393345

RESUMEN

Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.


Asunto(s)
Asma , Células Caliciformes , Quinasas Asociadas a rho , Animales , Humanos , Ratones , Alérgenos , Inflamación , Interleucina-13 , Metaplasia , Sumoilación , Quinasas Asociadas a rho/química
4.
Redox Biol ; 56: 102420, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35969998

RESUMEN

Vitamin C (VC, l-ascorbic acid) is an essential nutrient that plays a key role in metabolism and functions as a potent antioxidant in regulating the S-nitrosylation and denitrosylation of target proteins. The precise function of VC deprivation in glucose homeostasis is still unknown. In the absence of L-gulono-1,4-lactone oxidoreductase, an essential enzyme for the last step of VC synthesis, VC deprivation resulted in persistent hypoglycemia and subsequent impairment of cognitive functions in female but not male mouse pups. The cognitive disorders caused by VC deprivation were largely reversed when these female pups were given glucose. VC deprivation-induced S-nitrosylation of glycogen synthase kinase 3ß (GSK3ß) at Cys14, which activated GSK3ß and inactivated glycogen synthase to decrease glycogen synthesis and storage under the feeding condition, while VC deprivation inactivated glycogen phosphorylase to decrease glycogenolysis under the fasting condition, ultimately leading to hypoglycemia and cognitive disorders. Treatment with Nω-Nitro-l-arginine methyl ester (l-NAME), a specific inhibitor of nitric oxide synthase, on the other hand, effectively prevented S-nitrosylation and activation of GSK3ß in female pups in response to the VC deprivation and reversed hypoglycemia and cognitive disorders. Overall, this research identifies S-nitrosylation of GSK3ß and subsequent GSK3ß activation as a previously unknown mechanism controlling glucose homeostasis in female pups in response to VC deprivation, implying that VC supplementation in the prevention of hypoglycemia and cognitive disorders should be considered in the certain groups of people, particularly young females.


Asunto(s)
Deficiencia de Ácido Ascórbico , Cognición , Hipoglucemia , Trastornos Neurocognitivos , Animales , Antioxidantes , Ácido Ascórbico/farmacología , Deficiencia de Ácido Ascórbico/complicaciones , Deficiencia de Ácido Ascórbico/metabolismo , Femenino , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Fosforilasa , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hipoglucemia/etiología , Hipoglucemia/metabolismo , Lactonas , Ratones , NG-Nitroarginina Metil Éster/farmacología , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/metabolismo , Óxido Nítrico Sintasa
5.
Oncogene ; 40(35): 5357-5366, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34267330

RESUMEN

Large tumour suppressor (LATS) 1/2, the core kinases of Hippo signalling, are critical for maintaining tissue homeostasis. Here, we investigate the role of SUMOylation in the regulation of LATS activation. High cell density induces the expression of components of the SUMOylation machinery and enhances the SUMOylation and activation of Lats1 but not Lats2, whereas genetic deletion of the SUMOylation E2 ligase, Ubc9, abolishes this Lats1 activation. Moreover, SUMOylation occurs at the K830 (mouse K829) residue to activate LATS1 and depends on the PIAS1/2 E3 ligase. Whereas the K830 deSUMOylation mutation of LATS1 found in the human metastatic prostate cancers eliminates the kinase activity by attenuating the formation of the phospho-MOB1/phospho-LATS1 complex. As a result, the LATS1(K830R) transgene phenocopies Yap transgene to cause the oversized livers in mice, whereas Lats1(K829R) knock-in phenocopies the deletion of Lats1 in causing the reproductive and endocrine defects and ovary tumours in mice. Thus, SUMOylation-mediated LATS1 activation is an integral component of Hippo signalling in the regulation of tissues homeostasis.


Asunto(s)
Homeostasis , Proteínas Serina-Treonina Quinasas , Sumoilación , Animales , Ratones , Proteínas Supresoras de Tumor
6.
Cell Regen ; 10(1): 8, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33655459

RESUMEN

The Wnt/ß-catenin signaling pathway appears to be particularly important for bone homeostasis, whereas nuclear accumulation of ß-catenin requires the activation of Rac1, a member of the Rho small GTPase family. The aim of the present study was to investigate the role of RhoA/Rho kinase (Rock)-mediated Wnt/ß-catenin signaling in the regulation of aging-associated bone loss. We find that Lrp5/6-dependent and Lrp5/6-independent RhoA/Rock activation by Wnt3a activates Jak1/2 to directly phosphorylate Gsk3ß at Tyr216, resulting in Gsk3ß activation and subsequent ß-catenin destabilization. In line with these molecular events, RhoA loss- or gain-of-function in mouse embryonic limb bud ectoderms interacts genetically with Dkk1 gain-of-function to rescue the severe limb truncation phenotypes or to phenocopy the deletion of ß-catenin, respectively. Likewise, RhoA loss-of-function in pre-osteoblasts robustly increases bone formation while gain-of-function decreases it. Importantly, high RhoA/Rock activity closely correlates with Jak and Gsk3ß activities but inversely correlates with ß-catenin signaling activity in bone marrow mesenchymal stromal cells from elderly male humans and mice, whereas systemic inhibition of Rock therefore activates the ß-catenin signaling to antagonize aging-associated bone loss. Taken together, these results identify RhoA/Rock-dependent Gsk3ß activation and subsequent ß-catenin destabilization as a hitherto uncharacterized mechanism controlling limb outgrowth and bone homeostasis.

7.
Life Sci ; 264: 118655, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141042

RESUMEN

AIM: Large tumor suppressor 1 (LATS1) is a Ser/Thr kinase to mediate Hippo signaling pathway and plays a pivotal role in tumor suppression. By searching the COSMIC database, we found a somatic missense mutation (NM_004690.4:c.2552C>T) of human LATS1 (NP_004681.1:p.851T>I) in two colorectal cancer cell lines, and investigated the role and underlying mechanism of this mutation in the colorectal tumorigenesis. MAIN METHODS: We performed structural and biochemistry analyses to investigate the role of LATS1 T851I mutation in Hippo signaling activation and used the mouse xenograft model to assess the role of this mutation in the colorectal tumorigenesis. KEY FINDINGS: By structural and biochemistry approaches, we propose that T851 is an active residue other than Ser909 on the activation loop and is essential for LATS1 phosphorylation and kinase activity. We then reveal that T851I mutation in LATS1 not only destabilizes the phospho-Thr1079-LATS1, a prerequisite of LATS1 kinase activity, but also reduces its binding to the downstream effectors, YAP and TAZ. As a result, T851I mutation in LATS1 attenuates Hippo signaling and decreases its tumor-suppressor functions in the colorectal cancer. SIGNIFICANCE: The present study identifies the T851 as an essential residue for LATS1 kinase activity and uncovers the T851I mutation of LATS1 and consequent Hippo signaling suppression as a hitherto uncharacterized mechanism controlling colorectal tumorigenesis.


Asunto(s)
Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Vía de Señalización Hippo , Humanos , Masculino , Ratones Desnudos , Modelos Moleculares , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...