Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Polymers (Basel) ; 16(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794614

RESUMEN

Cardiovascular diseases (CVDs), the world's most prominent cause of mortality, continue to be challenging conditions for patients, physicians, and researchers alike. CVDs comprise a wide range of illnesses affecting the heart, blood vessels, and the blood that flows through and between them. Advances in nanomedicine, a discipline focused on improving patient outcomes through revolutionary treatments, imaging agents, and ex vivo diagnostics, have created enthusiasm for overcoming limitations in CVDs' therapeutic and diagnostic landscapes. Nanomedicine can be involved in clinical purposes for CVD through the augmentation of cardiac or heart-related biomaterials, which can be functionally, mechanically, immunologically, and electrically improved by incorporating nanomaterials; vasculature applications, which involve systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials, or tissue-nanoengineered solutions; and enhancement of sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. Therefore, this review discusses the latest studies based on applying organic nanoparticles in cardiovascular illness, including drug-conjugated polymers, lipid nanoparticles, and micelles. Following the revised information, it can be concluded that organic nanoparticles may be the most appropriate type of treatment for cardiovascular diseases due to their biocompatibility and capacity to integrate various drugs.

2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256075

RESUMEN

Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.


Asunto(s)
Enfermedades Cardiovasculares , Nanopartículas del Metal , Nanocáscaras , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Antibacterianos , Exactitud de los Datos
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256151

RESUMEN

Cardiovascular diseases (CVDs) increasingly burden health systems and patients worldwide, necessitating the improved awareness of current treatment possibilities and the development of more efficient therapeutic strategies. When plaque deposits narrow the arteries, the standard of care implies the insertion of a stent at the lesion site. The most promising development in cardiovascular stents has been the release of medications from these stents. However, the use of drug-eluting stents (DESs) is still challenged by in-stent restenosis occurrence. DESs' long-term clinical success depends on several parameters, including the degradability of the polymers, drug release profiles, stent platforms, coating polymers, and the metals and their alloys that are employed as metal frames in the stents. Thus, it is critical to investigate new approaches to optimize the most suitable DESs to solve problems with the inflammatory response, delayed endothelialization, and sub-acute stent thrombosis. As certain advancements have been reported in the literature, this review aims to present the latest updates in the coatings field for cardiovascular stents. Specifically, there are described various organic (e.g., synthetic and natural polymer-based coatings, stents coated directly with drugs, and coatings containing endothelial cells) and inorganic (e.g., metallic and nonmetallic materials) stent coating options, aiming to create an updated framework that would serve as an inception point for future research.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Enfermedades Cardiovasculares/terapia , Arterias , Aleaciones , Polímeros
4.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887945

RESUMEN

Magnetite nanoparticles (Fe3O4 NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, Fe3O4 NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques. In this context, the present paper describes the development of an innovative 3D microfluidic platform suitable for synthesizing uniform Fe3O4 NPs with fine-tuned properties. On-chip co-precipitation was performed, followed by microwave-assisted silanization. The obtained nanoparticles were characterized from the compositional and microstructural perspectives by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, supplementary physicochemical investigations, such as Fourier Transform Infrared Spectroscopy (FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis) Spectrophotometry, Dynamic Light Scattering (DLS), and Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) analyses, demonstrated the successful surface modification. Considering the positive results, the presented synthesis and functionalization method represents a fast, reliable, and effective alternative for producing tailored magnetic nanoparticles.

5.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762601

RESUMEN

Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.


Asunto(s)
Abdomen , Nanoestructuras , Polímeros , Impresión Tridimensional , Refuerzo en Psicología
6.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679559

RESUMEN

Sensors for health are a dynamic technology and sensor-based medical devices (SMD) are becoming an important part of health monitoring systems in healthcare centers and ambulatory care. The rapid growth in the number, diversity and costs of medical devices and Internet of Things (IoT) healthcare platforms imposes a challenge for healthcare managers: making a rational choice of SMD vendor from a set of potential SMD vendors. The aim of this paper is to develop a hybrid approach that combines a performance evaluation model and a multi-objective model for the SMD vendor selection problem. For determining the criteria weights in the performance evaluation model, an original version of the best worst method (BWM) is applied, which we call the flexible best worst method (FBWM). The multi-objective model has two objective functions; one is to maximize the SMD performance and the other is to minimize the SMD cost. A case study for the application of the hybrid approach for SMD procurement in a healthcare center is analyzed. The hybrid approach can support healthcare decision makers in their SMD procurement decisions.


Asunto(s)
Atención a la Salud , Monitoreo Fisiológico
7.
Pharmaceutics ; 16(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38258054

RESUMEN

Gastrointestinal cancers are characterized by a frequent incidence, a high number of associated deaths, and a tremendous burden on the medical system and patients worldwide. As conventional chemotherapeutic drugs face numerous limitations, researchers started to investigate better alternatives for extending drug efficacy and limiting adverse effects. A remarkably increasing interest has been addressed to chitosan and cyclodextrins, two highly versatile natural carbohydrate materials endowed with unique physicochemical properties. In this respect, numerous studies reported on fabricating various chitosan and cyclodextrin-based formulations that enabled prolonged circulation times, improved cellular internalization of carried drugs, preferential uptake by the targeted cells, reduced side effects, enhanced apoptosis rates, and increased tumor suppression rates. Therefore, this paper aims to briefly present the advantageous properties of these oligo- and polysaccharides for designing drug delivery systems, further focusing the discussion on nanocarrier systems based on chitosan/cyclodextrins for treating different gastrointestinal cancers. Specifically, there are reviewed studies describing promising solutions for colorectal, liver, gastric, pancreatic, and other types of cancers of the digestive system towards creating an updated framework of what concerns anticancer chitosan/cyclodextrin-based drug delivery systems.

8.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742903

RESUMEN

Low back pain (LBP) represents a frequent and debilitating condition affecting a large part of the global population and posing a worldwide health and economic burden. The major cause of LBP is intervertebral disc degeneration (IDD), a complex disease that can further aggravate and give rise to severe spine problems. As most of the current treatments for IDD either only alleviate the associated symptoms or expose patients to the risk of intraoperative and postoperative complications, there is a pressing need to develop better therapeutic strategies. In this respect, the present paper first describes the pathogenesis and etiology of IDD to set the framework for what has to be combated to restore the normal state of intervertebral discs (IVDs), then further elaborates on the recent advances in managing IDD. Specifically, there are reviewed bioactive compounds and growth factors that have shown promising potential against underlying factors of IDD, cell-based therapies for IVD regeneration, biomimetic artificial IVDs, and several other emerging IDD therapeutic options (e.g., exosomes, RNA approaches, and artificial intelligence).


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Inteligencia Artificial , Humanos , Péptidos y Proteínas de Señalización Intercelular , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/etiología , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/terapia , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/terapia
9.
Entropy (Basel) ; 24(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35626527

RESUMEN

The COVID-19 pandemic caused important health and societal damage across the world in 2020-2022. Its study represents a tremendous challenge for the scientific community. The correct evaluation and analysis of the situation can lead to the elaboration of the most efficient strategies and policies to control and mitigate its propagation. The paper proposes a Multi-Criteria Decision Support (MCDS) based on the combination of three methods: the Group Analytic Hierarchy Process (GAHP), which is a subjective group weighting method; Extended Entropy Weighting Method (EEWM), which is an objective weighting method; and the COmplex PRoportional ASsessment (COPRAS), which is a multi-criteria method. The COPRAS uses the combined weights calculated by the GAHP and EEWM. The sum normalization (SN) is considered for COPRAS and EEWM. An extended entropy is proposed in EEWM. The MCDS is implemented for the development of a complex COVID-19 indicator called COVIND, which includes several countries' COVID-19 indicators, over a fourth COVID-19 wave, for a group of European countries. Based on these indicators, a ranking of the countries is obtained. An analysis of the obtained rankings is realized by the variation of two parameters: a parameter that describes the combination of weights obtained with EEWM and GAHP and the parameter of extended entropy function. A correlation analysis between the new indicator and the general country indicators is performed. The MCDS provides policy makers with a decision support able to synthesize the available information on the fourth wave of the COVID-19 pandemic.

10.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439383

RESUMEN

In the last decades, the treatment of primary and secondary bone tumors has faced a slow-down in its development, being mainly based on chemotherapy, radiotherapy, and surgical interventions. However, these conventional therapeutic strategies present a series of disadvantages (e.g., multidrug resistance, tumor recurrence, severe side effects, formation of large bone defects), which limit their application and efficacy. In recent years, these procedures were combined with several adjuvant therapies, with different degrees of success. To overcome the drawbacks of current therapies and improve treatment outcomes, other strategies started being investigated, like carrier-mediated drug delivery, bone substitutes for repairing bone defects, and multifunctional scaffolds with bone tissue regeneration and antitumor properties. Thus, this paper aims to present the types of bone tumors and their current treatment approaches, further focusing on the recent advances in new therapeutic alternatives.

11.
Cancers (Basel) ; 12(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066077

RESUMEN

Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.

12.
Curr Drug Targets ; 19(4): 393-405, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-27033196

RESUMEN

BACKGROUND: Nanomedicine is currently exploited for manufacturing therapeutic DDS and treatments protocols for various diseases and disorders. To obtain DDS, different types of materials are used, from organic to inorganic, polar to non-polar, micro to nanomaterials from 0D to 3D structured materials, respectively. Many of these materials were extensively studied and reviewed in the literature. OBJECTIVE: The objectives of this review is to make a clear overview on drug delivery systems depending several aspects related to delivery mechanisms, the type of supports, the active agents ant the potential applications in the prevention or treatment of various diseases. RESULTS: Following aspects are extensively debated: synthesis issues, characteristics and potential uses of 0, 1, 2 and 3D drug delivery systems according to their nature and applications. These systems can be can be tailored according to the delivery mechanism (0-3D delivery) as well as by using more active agents, with more therapeutic activity or same activity but with different mechanisms of action. The size and morphology of the drug delivery system is essential, especially when talking about the internalization into the tumor cells while the mobility is especially dependent on the size. The influence of the nature of the supports and their polarity was extensively studied during the last decades, as well as the importance of the porosity and pore size, but only limited papers are devoted to the holistic analysis of the dimensionality of the support and the ways of delivering the active agents. CONCLUSION: This review is devoted to a holistic insight into the drug delivery systems, from a new, only marginally studied point of view, meaning the dimensionality of the drug delivery systems and the characteristics of the delivery.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Animales , Portadores de Fármacos/síntesis química , Humanos , Estructura Molecular , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Porosidad , Nanomedicina Teranóstica
13.
Curr Stem Cell Res Ther ; 12(2): 145-154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26521971

RESUMEN

The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/instrumentación , Cerámica/uso terapéutico , Nanocompuestos/química , Polímeros/uso terapéutico , Ligamento Cruzado Anterior/fisiopatología , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Reconstrucción del Ligamento Cruzado Anterior/métodos , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/uso terapéutico , Cerámica/síntesis química , Humanos , Ensayo de Materiales , Nanocompuestos/ultraestructura , Polímeros/síntesis química , Ingeniería de Tejidos/métodos
14.
Rom J Morphol Embryol ; 57(2): 483-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27516022

RESUMEN

In this study, MCM-41 mesoporous silica nanoparticles (NPs) and MCM-41÷Fe3O4 mesoporous silica NPs were prepared by sol-gel method using CTAB (cetyltrimethylammonium bromide) as template and TEOS (tetraethyl orthosilicate) as silica precursor in order to use these materials as drug delivery system (DDS) for different biologically active agents. The MCM-41 and MCM-41÷Fe3O4 mesoporous silica NPs were characterized using specific physico-chemical methods [transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption and desorption studies - BET (Brunauer-Emmett-Teller) method, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy], while the release studies were done by a high-performance liquid chromatography (HPLC)-modified method. The pH dependence of the delivery of folic acid from the mesoporous structures was analyzed and found that the release is pH sensitive. The lower delivery at strongly acid pH comparing with neutral/slightly alkaline pH could be beneficial because in stomach the folic acid can be destroyed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Compuestos Férricos/química , Ácido Fólico/química , Dióxido de Silicio/química , Ciclo Celular/efectos de los fármacos , Línea Celular , Cromatografía Liquida , Liberación de Fármacos , Compuestos Férricos/toxicidad , Ácido Fólico/toxicidad , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Nitrógeno , Porosidad , Dióxido de Silicio/toxicidad , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Pruebas de Toxicidad , Difracción de Rayos X
15.
Molecules ; 21(6)2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27294905

RESUMEN

The aim of our research activity was to obtain a biocompatible nanostructured composite based on naturally derived biopolymers (chitin and sodium alginate) loaded with commercial antibiotics (either Cefuroxime or Cefepime) with dual functions, namely promoting wound healing and assuring the local delivery of the loaded antibiotic. Compositional, structural, and morphological evaluations were performed by using the thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and fourier transform infrared spectroscopy (FTIR) analytical techniques. In order to quantitatively and qualitatively evaluate the biocompatibility of the obtained composites, we performed the tetrazolium-salt (MTT) and agar diffusion in vitro assays on the L929 cell line. The evaluation of antimicrobial potential was evaluated by the viable cell count assay on strains belonging to two clinically relevant bacterial species (i.e., Escherichia coli and Staphylococcus aureus).


Asunto(s)
Alginatos/química , Antibacterianos/química , Quitina/química , Nanocompuestos/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Alginatos/síntesis química , Alginatos/uso terapéutico , Antibacterianos/síntesis química , Antibacterianos/uso terapéutico , Quitina/síntesis química , Quitina/uso terapéutico , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Ácido Glucurónico/síntesis química , Ácido Glucurónico/química , Ácido Glucurónico/uso terapéutico , Ácidos Hexurónicos/síntesis química , Ácidos Hexurónicos/química , Ácidos Hexurónicos/uso terapéutico , Humanos , Nanocompuestos/química , Polímeros/síntesis química , Polímeros/química , Polímeros/uso terapéutico , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
16.
Rom J Morphol Embryol ; 57(1): 23-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27151685

RESUMEN

In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), ß-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/química , Neoplasias/tratamiento farmacológico , Animales , Portadores de Fármacos/química , Humanos , Concentración de Iones de Hidrógeno
17.
Rom J Morphol Embryol ; 57(1): 107-14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27151695

RESUMEN

This work presents a novel nano-modified coating for wound dressings and other medical devices with anti-infective properties, based on functionalized zinc oxide nanostructures and orange oil (ZnO@OO). The obtained nanosurfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED), differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The obtained nanocomposite coatings exhibited an antimicrobial activity superior to bare ZnO nanoparticles (NPs) and to the control antibiotic against Staphylococcus aureus and Escherichia coli, as revealed by the lower minimal inhibitory concentration values. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based, viable cell count method was used. The coated wound dressings proved to be more resistant to S. aureus microbial colonization and biofilm formation compared to the uncoated controls. These results, correlated with the good in vivo biodistribution open new directions for the design of nanostructured bioactive coating and surfaces, which can find applications in the medical field, for obtaining improved bioactive wound dressings and prosthetic devices, but also in food packaging and cosmetic industry.


Asunto(s)
Antiinfecciosos/uso terapéutico , Vendajes , Materiales Biocompatibles Revestidos/uso terapéutico , Aceites de Plantas/uso terapéutico , Heridas y Lesiones/tratamiento farmacológico , Óxido de Zinc/uso terapéutico , Animales , Antiinfecciosos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ratones , Aceites de Plantas/farmacología , Staphylococcus aureus/efectos de los fármacos , Termogravimetría , Difracción de Rayos X , Óxido de Zinc/farmacología
18.
Int J Pharm ; 510(2): 532-42, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27032567

RESUMEN

This work reports the non-surfactant templated synthesis and characterization of a new tyrosine-silica/antibiotics (TyR-SiO2/ATBs) nanocomposite, as well as both in vitro and in vivo cytotoxicity and antimicrobial activity against the microbial pathogen Staphylococcus aureus. The in vitro microbiological tests proved that the obtained nanobiostructure significantly enhance the antimicrobial activity of three commonly used antibiotics against S. aureus (i.e. erythromycin (ERI), gentamicin (GEN), and cloxacillin (CLO)) as revealed by the increased diameters of the growth inhibition zones and the decreased minimal inhibitory concentration values, as well as by the inhibitory effect of sub-lethal antibiotic concentrations on the ability of the respective pathogenic strains to adhere and colonize different substrata. These results, correlated with the lack of toxicity against mesenchymal stem cells along with an appropriate in vivo biodistribution highlight the promising therapeutic potential of this carrier that allows a decrease of the required active doses while significantly lessening the harmful side effects of the medication on the host organism.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/química , Materiales Biocompatibles/química , Dióxido de Silicio/química , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/metabolismo , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Distribución Tisular
19.
Molecules ; 21(1): E115, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26805790

RESUMEN

The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), ß-cyclodextrin (ß-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Benzofuranos/química , Línea Celular , Supervivencia Celular , Colágeno/química , Durapatita/química , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos , Andamios del Tejido/química , Difracción de Rayos X
20.
Materials (Basel) ; 9(5)2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-28773468

RESUMEN

The aim of this work was to obtain an antimicrobial coating (NanoAg) for polyester-nylon wound dressings (WDs) for reducing the risk of exogenous wound related infections. The as-prepared NanoAg-WDs were characterized by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), SAED (Selected Area Electron Diffraction) and IRM (InfraRed Microscopy). Biological characterization consisted of in vitro evaluation of the interaction with fibroblast cell cultures and in vivo biodistribution studies of AgNPs on mice models. Then, specimens of commercial WDs were immersed in a glucose and NaOH solution of silver nanoparticles, followed by the subsequent dropwise addition of AgNO3 solution. The antimicrobial efficiency of the NanoAg-WDs was assessed by in vitro qualitative and quantitative analyses on Staphylococcus aureus and Pseudomonas aeruginosa strains. The in vitro and in vivo studies demonstrated that the tested nanoparticles utilized to coat WDs have a good biocompatibility, allowing the normal development of cultured human cells and revealing a normal biodistribution within a mouse model, without toxic effects. The modified and viable cells count analyses proved that the modified WDs exhibit an improved inhibitory activity of microbial colonization, attachment and biofilm growth. The reported data recommend this type of coatings to obtain modified WDs with antibacterial properties, able to prevent the exogenous microbial contamination of the wound tissue, colonization and further biofilm development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...