Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2302642, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683053

RESUMEN

Epicardial cells (EPIs) form the outer layer of the heart and play an important role in development and disease. Current heart-on-a-chip platforms still do not fully mimic the native cardiac environment due to the absence of relevant cell types, such as EPIs. Here, using the Biowire II platform, engineered cardiac tissues with an epicardial outer layer and inner myocardial structure are constructed, and an image analysis approach is developed to track the EPI cell migration in a beating myocardial environment. Functional properties of EPI cardiac tissues improve over two weeks in culture. In conditions mimicking ischemia reperfusion injury (IRI), the EPI cardiac tissues experience less cell death and a lower impact on functional properties. EPI cell coverage is significantly reduced and more diffuse under normoxic conditions compared to the post-IRI conditions. Upon IRI, migration of EPI cells into the cardiac tissue interior is observed, with contributions to alpha smooth muscle actin positive cell population. Altogether, a novel heart-on-a-chip model is designed to incorporate EPIs through a formation process that mimics cardiac development, and this work demonstrates that EPI cardiac tissues respond to injury differently than epicardium-free controls, highlighting the importance of including EPIs in heart-on-a-chip constructs that aim to accurately mimic the cardiac environment.

2.
Cell Rep Med ; 5(5): 101520, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38642550

RESUMEN

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.


Asunto(s)
Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Cadenas Pesadas de Miosina , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Niño , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Genotipo , Miosinas/metabolismo , Miosinas/genética , Masculino , Femenino , Sarcómeros/metabolismo , Sarcómeros/genética
3.
Sci Adv ; 10(13): eadk0164, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536913

RESUMEN

Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.


Asunto(s)
COVID-19 , Exosomas , Miocarditis , Humanos , ADN Mitocondrial/genética , Volumen Sistólico , Calcio , Función Ventricular Izquierda , Inflamación , SARS-CoV-2 , Citocinas
4.
ACS Nano ; 18(1): 314-327, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147684

RESUMEN

Cell-based models that mimic in vivo heart physiology are poised to make significant advances in cardiac disease modeling and drug discovery. In these systems, cardiomyocyte (CM) contractility is an important functional metric, but current measurement methods are inaccurate and low-throughput or require complex setups. To address this need, we developed a standalone noninvasive, label-free ultrasound technique operating at 40-200 MHz to measure the contractile kinetics of cardiac models, ranging from single adult CMs to 3D microtissue constructs in standard cell culture formats. The high temporal resolution of 1000 fps resolved the beat profile of single mouse CMs paced at up to 9 Hz, revealing limitations of lower speed optical based measurements to resolve beat kinetics or characterize aberrant beats. Coupling of ultrasound with traction force microscopy enabled the measurement of the CM longitudinal modulus and facile estimation of adult mouse CM contractile forces of 2.34 ± 1.40 µN, comparable to more complex measurement techniques. Similarly, the beat rate, rhythm, and drug responses of CM spheroid and microtissue models were measured, including in configurations without optical access. In conclusion, ultrasound can be used for the rapid characterization of CM contractile function in a wide range of commonly studied configurations ranging from single cells to 3D tissue constructs using standard well plates and custom microdevices, with applications in cardiac drug discovery and cardiotoxicity evaluation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ratones , Animales , Miocitos Cardíacos , Células Cultivadas , Descubrimiento de Drogas , Dispositivos Laboratorio en un Chip
5.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609237

RESUMEN

Cardiovascular disease continues to take more human lives than all cancer combined, prompting the need for improved research models and treatment options. Despite a significant progress in development of mature heart-on-a-chip models of fibrosis and cardiomyopathies starting from induced pluripotent stem cells (iPSCs), human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip system with circulating immune cells to model SARS-CoV-2-induced acute myocarditis. Briefly, we observed hallmarks of COVID-19-induced myocardial inflammation in the heart-on-a-chip model, as the presence of immune cells augmented the expression levels of proinflammatory cytokines, triggered progressive impairment of contractile function and altered intracellular calcium transient activities. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the in vitro heart-on-a-chip model and then validated in COVID-19 patients with low left ventricular ejection fraction (LVEF), demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2 induced myocardial inflammation, we established that administration of human umbilical vein-derived EVs effectively rescued the contractile deficit, normalized intracellular calcium handling, elevated the contraction force and reduced the ccf- mtDNA and chemokine release via TLR-NF-kB signaling axis.

6.
Biomaterials ; 301: 122255, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37651922

RESUMEN

To better understand sodium channel (SCN5A)-related cardiomyopathies, we generated ventricular cardiomyocytes from induced pluripotent stem cells obtained from a dilated cardiomyopathy patient harbouring the R222Q mutation, which is only expressed in adult SCN5A isoforms. Because the adult SCN5A isoform was poorly expressed, without functional differences between R222Q and control in both embryoid bodies and cell sheet preparations (cultured for 29-35 days), we created heart-on-a-chip biowires which promote myocardial maturation. Indeed, biowires expressed primarily adult SCN5A with R222Q preparations displaying (arrhythmogenic) short action potentials, altered Na+ channel biophysical properties and lower contractility compared to corrected controls. Comprehensive RNA sequencing revealed differential gene regulation between R222Q and control biowires in cellular pathways related to sarcoplasmic reticulum and dystroglycan complex as well as biological processes related to calcium ion regulation and action potential. Additionally, R222Q biowires had marked reductions in actin expression accompanied by profound sarcoplasmic disarray, without differences in cell composition (fibroblast, endothelial cells, and cardiomyocytes) compared to corrected biowires. In conclusion, we demonstrate that in addition to altering cardiac electrophysiology and Na+ current, the R222Q mutation also causes profound sarcomere disruptions and mechanical destabilization. Possible mechanisms for these observations are discussed.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Miocitos Cardíacos , Cardiomiopatía Dilatada/genética , Células Endoteliales , Dispositivos Laboratorio en un Chip
7.
Biofabrication ; 15(3)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37230083

RESUMEN

We developed a heart-on-a-chip platform that integrates highly flexible, vertical, 3D micropillar electrodes for electrophysiological recording and elastic microwires for the tissue's contractile force assessment. The high aspect ratio microelectrodes were 3D-printed into the device using a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). A pair of flexible, quantum dots/thermoplastic elastomer nanocomposite microwires were 3D printed to anchor the tissue and enable continuous contractile force assessment. The 3D microelectrodes and flexible microwires enabled unobstructed human iPSC-based cardiac tissue formation and contraction, suspended above the device surface, under both spontaneous beating and upon pacing with a separate set of integrated carbon electrodes. Recording of extracellular field potentials using the PEDOT:PSS micropillars was demonstrated with and without epinephrine as a model drug, non-invasively, along within situmonitoring of tissue contractile properties and calcium transients. Uniquely, the platform provides integrated profiling of electrical and contractile tissue properties, which is critical for proper evaluation of complex, mechanically and electrically active tissues, such as the heart muscle under both physiological and pathological conditions.


Asunto(s)
Elastómeros , Polímeros , Humanos , Microelectrodos , Impresión Tridimensional , Dispositivos Laboratorio en un Chip
8.
Adv Biol (Weinh) ; 6(11): e2101165, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35798316

RESUMEN

Despite current efforts in organ-on-chip engineering to construct miniature cardiac models, they often lack some physiological aspects of the heart, including fiber orientation. This motivates the development of bioartificial left ventricle models that mimic the myofiber orientation of the native ventricle. Herein, an approach relying on microfabricated elastomers that enables hierarchical assembly of 2D aligned cell sheets into a functional conical cardiac ventricle is described. Soft lithography and injection molding techniques are used to fabricate micro-grooves on an elastomeric polymer scaffold with three different orientations ranging from -60° to +60°, each on a separate trapezoidal construct. The width of the micro-grooves is optimized to direct the majority of cells along the groove direction and while periodic breaks are used to promote cell-cell contact. The scaffold is wrapped around a central mandrel to obtain a conical-shaped left ventricle model inspired by the size of a human left ventricle 19 weeks post-gestation. Rectangular micro-scale holes are incorporated to alleviate oxygen diffusional limitations within the 3D scaffold. Cardiomyocytes within the 3D left ventricle constructs showed high viability in all layers after 7 days of cultivation. The hierarchically assembled left ventricle also provided functional readouts such as calcium transients and ejection fraction.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Ventrículos Cardíacos , Elastómeros , Miocitos Cardíacos
9.
ACS Biomater Sci Eng ; 8(6): 2144-2160, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35523206

RESUMEN

Despite capturing the imagination of scientists for decades, the goal of creating an artificial heart for transplantation proved to be significantly more challenging than initially anticipated. Toward this goal, recent ground-breaking studies demonstrate the development of functional left ventricular (LV) models. LV models are artificially constructed 3D chambers that are capable of containing liquid within the engineered cavity and exhibit the functionality of native LV including contraction, ejection of fluid, and electrical impulse propagation. Various hydrogels and polymers have been used in manufacturing of LV models, relying on techniques such as electrospinning, bioprinting, casting, and molding. Most studies scaled down the models based on the dimensions of the human or rat ventricle. Initially, neonatal rat cardiomyocytes were the cell type of choice for construction the LV models. Yet, as the stem cell biology field advanced, recent studies focused on the use of cardiomyocytes derived from human induced pluripotent stem cells. In this review, we first describe the physiological characteristics of the human heart, to establish the parameter space for modeling. We then elaborate on current advances in the field and compare recently developed LV models among themselves and with the native human left ventricle. Fabrication methods, cell types, biomaterials, functional properties, and disease modeling capability are some of the major parameters that have distinguished these models. We also highlight some of the current challenges in this field, such as vascularization, cell composition and fidelity, and discuss potential solutions to overcome them.


Asunto(s)
Ventrículos Cardíacos , Células Madre Pluripotentes Inducidas , Animales , Humanos , Hidrogeles/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ingeniería de Tejidos/métodos
10.
Lab Chip ; 22(6): 1171-1186, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35142777

RESUMEN

Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.


Asunto(s)
Angiopoyetina 1 , Tratamiento Farmacológico de COVID-19 , COVID-19 , Endotelio Vascular , Inflamación , SARS-CoV-2 , COVID-19/virología , Células Endoteliales/inmunología , Células Endoteliales/virología , Endotelio Vascular/inmunología , Endotelio Vascular/virología , Humanos , Inmunidad Innata , Inflamación/tratamiento farmacológico , Inflamación/virología , Dispositivos Laboratorio en un Chip , Leucocitos Mononucleares
11.
J Mol Cell Cardiol ; 160: 97-110, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34216608

RESUMEN

Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.


Asunto(s)
Angiotensina II/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Animales , Cardiomiopatías/patología , Cardiotónicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/metabolismo , Fibrosis , Humanos , Células Madre Pluripotentes Inducidas/citología , Dispositivos Laboratorio en un Chip , Losartán/farmacología , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proyectos Piloto , Proteoma , Proteómica/métodos , Proteínas Recombinantes/farmacología , Relaxina/farmacología , Remodelación Ventricular/efectos de los fármacos
12.
Adv Biol (Weinh) ; 5(7): e2000190, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34008910

RESUMEN

A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.


Asunto(s)
Corazón , Ingeniería de Tejidos , Diferenciación Celular , Biología Evolutiva , Matriz Extracelular
13.
Adv Drug Deliv Rev ; 165-166: 60-76, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31917972

RESUMEN

Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.


Asunto(s)
Descubrimiento de Drogas/métodos , Corazón/fisiología , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos/métodos , Descubrimiento de Drogas/instrumentación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microtecnología , Miocitos Cardíacos/fisiología
14.
ACS Biomater Sci Eng ; 6(3): 1333-1343, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33455372

RESUMEN

Bioelastomers have been extensively used in tissue engineering applications because of favorable mechanical stability, tunable properties, and chemical versatility. As these materials generally possess low elastic modulus and relatively long gelation time, it is challenging to 3D print them using traditional techniques. Instead, the field of 3D printing has focused preferentially on hydrogels and rigid polyester materials. To develop a versatile approach for 3D printing of elastomers, we used freeform reversible embedding of suspended prepolymers. A family of novel fast photocrosslinakble bioelastomer prepolymers were synthesized from dimethyl itaconate, 1,8-octanediol, and triethyl citrate. Tensile testing confirmed their elastic properties with Young's moduli in the range of 11-53 kPa. These materials supported cultivation of viable cells and enabled adhesion and proliferation of human umbilical vein endothelial cells. Tubular structures were created by embedding the 3D printed microtubes within a secondary hydrogel that served as a temporary support. Upon photocrosslinking and porogen leaching, the polymers were permeable to small molecules (TRITC-dextran). The polymer microtubes were assembled on the 96-well plates custom made by hot-embossing, as a tool to connect multiple organs-on-a-chip. The endothelialization of the tubes was performed to confirm that these microtubes can be utilized as vascular tubes to support parenchymal tissues seeded on them.


Asunto(s)
Células Endoteliales , Impresión Tridimensional , Elastómeros , Humanos , Hidrogeles , Ingeniería de Tejidos
15.
Matrix Biol ; 85-86: 189-204, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981898

RESUMEN

Organ-on-a-chip systems have the potential to revolutionize drug screening and disease modeling through the use of human stem cell-derived cardiomyocytes. The predictive power of these tissue models critically depends on the functional assembly and maturation of human cells that are used as building blocks for organ-on-a-chip systems. To resemble a more adult-like phenotype on these heart-on-a-chip systems, the surrounding micro-environment of individual cardiomyocyte needs to be controlled. Herein, we investigated the impact of four microenvironmental cues: cell seeding density, types and percentages of non-myocyte populations, the types of hydrogels used for tissue inoculation and the electrical conditioning regimes on the structural and functional assembly of human pluripotent stem cell-derived cardiac tissues. Utilizing a novel, plastic and open-access heart-on-a-chip system that is capable of continuous non-invasive monitoring of tissue contractions, we were able to study how different micro-environmental cues affect the assembly of the cardiomyocytes into a functional cardiac tissue. We have defined conditions that resulted in tissues exhibiting hallmarks of the mature human myocardium, such as positive force-frequency relationship and post-rest potentiation.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Técnicas de Cultivo de Órganos/métodos , Diferenciación Celular , Línea Celular , Humanos , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos , Andamios del Tejido
16.
ACS Cent Sci ; 5(7): 1146-1158, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31403068

RESUMEN

Myocardial fibrosis is a severe global health problem due to its prevalence in all forms of cardiac diseases and direct role in causing heart failure. The discovery of efficient antifibrotic compounds has been hampered due to the lack of a physiologically relevant disease model. Herein, we present a disease model of human myocardial fibrosis and use it to establish a compound screening system. In the Biowire II platform, cardiac tissues are suspended between a pair of poly(octamethylene maleate (anhydride) citrate) (POMaC) wires. Noninvasive functional readouts are realized on the basis of the deflection of the intrinsically fluorescent polymer. The disease model is constructed to recapitulate contractile, biomechanical, and electrophysiological complexities of fibrotic myocardium. Additionally, we constructed a heteropolar integrated model with fibrotic and healthy cardiac tissues coupled together. The integrated model captures the regional heterogeneity of scar lesion, border zone, and adjacent healthy myocardium. Finally, we demonstrate the utility of the system for the evaluation of antifibrotic compounds. The high-fidelity in vitro model system combined with convenient functional readouts could potentially facilitate the development of precision medicine strategies for cardiac fibrosis modeling and establish a pipeline for preclinical compound screening.

17.
Cell ; 176(4): 913-927.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686581

RESUMEN

Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.


Asunto(s)
Miocitos Cardíacos/citología , Técnicas de Cultivo de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Potenciales de Acción , Diferenciación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Miocardio/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos
18.
Biomaterials ; 198: 3-26, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30343824

RESUMEN

Cardiovascular disease is the leading cause of death worldwide. Although investment in drug discovery and development has been sky-rocketing, the number of approved drugs has been declining. Cardiovascular toxicity due to therapeutic drug use claims the highest incidence and severity of adverse drug reactions in late-stage clinical development. Therefore, to address this issue, new, additional, replacement and combinatorial approaches are needed to fill the gap in effective drug discovery and screening. The motivation for developing accurate, predictive models is twofold: first, to study and discover new treatments for cardiac pathologies which are leading in worldwide morbidity and mortality rates; and second, to screen for adverse drug reactions on the heart, a primary risk in drug development. In addition to in vivo animal models, in vitro and in silico models have been recently proposed to mimic the physiological conditions of heart and vasculature. Here, we describe current in vitro, in vivo, and in silico platforms for modelling healthy and pathological cardiac tissues and their advantages and disadvantages for drug screening and discovery applications. We review the pathophysiology and the underlying pathways of different cardiac diseases, as well as the new tools being developed to facilitate their study. We finally suggest a roadmap for employing these non-animal platforms in assessing drug cardiotoxicity and safety.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Simulación por Computador , Modelos Animales de Enfermedad , Descubrimiento de Drogas/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Diseño de Equipo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología
19.
Am J Physiol Regul Integr Comp Physiol ; 307(7): R879-87, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25100076

RESUMEN

After myocardial infarction (post-MI), inflammation and apoptosis contribute to progressive cardiac remodeling and dysfunction. Cardiac mineralocorticoid receptor (MR) and ß-adrenergic signaling promote apoptosis and inflammation. Post-MI, MR activation in the brain contributes to sympathetic hyperactivity and an increase in cardiac aldosterone. In the present study, we assessed the time course of macrophage infiltration and apoptosis in the heart as detected by both terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and active caspase-3 immunostaining in both myocytes and nonmyocytes, as well as the effects of central MR blockade by intracerebroventricular infusion of eplerenone at 5 µg/day on peak changes in macrophage infiltration and apoptosis post-MI. Macrophage numbers were markedly increased in the infarct and peri-infarct zones and to a minor extent in the noninfarct part of the left ventricle at 10 days post-MI and decreased over the 3-mo study period. Apoptosis of both myocytes and nonmyocytes was clearly apparent in the infarct and peri-infarct areas at 10 days post-MI. For TUNEL, the increases persisted at 4 and 12 wk, but the number of active caspase-3-positive cells markedly decreased. Central MR blockade significantly decreased CD80-positive proinflammatory M1 macrophages and increased CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade also reduced apoptosis of myocytes by 40-50% in the peri-infarct and to a lesser extent of nonmyocytes in the peri-infarct and infarct zones. These findings indicate that MR activation in the brain enhances apoptosis both in myocytes and nonmyocytes in the peri-infarct and infarct area post-MI and contributes to the inflammatory response.


Asunto(s)
Apoptosis/efectos de los fármacos , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Receptores de Mineralocorticoides/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Aldosterona/farmacología , Animales , Apoptosis/inmunología , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Eplerenona , Macrófagos/inmunología , Masculino , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Ratas Wistar , Receptores de Mineralocorticoides/inmunología , Receptores de Mineralocorticoides/metabolismo , Espironolactona/análogos & derivados , Espironolactona/farmacología , Remodelación Ventricular/fisiología
20.
Am J Physiol Heart Circ Physiol ; 305(9): H1309-20, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23997101

RESUMEN

Angiotensin II favors the development of atherosclerosis. Our goal was to determine if foam cell formation increases angiotensin II generation by the endogenous renin-angiotensin system (RAS) and if endogenously produced angiotensin II promotes lipid accumulation in macrophages. Differentiated THP-1 cells were treated with acetylated low-density lipoproteins (ac-LDL), native LDL (n-LDL), or no LDL. Expression of RAS genes was assessed and angiotensin I/II levels were quantified in media and cell lysate. Ac-LDL increased angiotensin I/II levels and the angiotensin II/I ratio in cells and media after foam cell formation. Renin mRNA or activity did not change, but renin blockade completely inhibited the increase in angiotensin II. Angiotensinogen mRNA but not protein level was increased. Angiotensin-converting enzyme (ACE) and cathepsin G mRNA and activities were enhanced by ac-LDL. Inhibition of renin, ACE, or the angiotensin II receptor 1 (AT1-receptor) largely abolished cholesteryl ester formation in cells exposed to ac-LDL and decreased scavenger receptor A (SR-A) and acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT-1) protein levels. Inhibition of renin or the AT1-receptor in cells treated with oxidized LDL also decreased SR-A and ACAT-1 protein and foam cell formation. ac-LDL also increased angiotensin II by human peripheral blood monocyte-derived macrophages, whereas blockade of renin decreased cholesterol ester formation in these macrophages. These findings indicate that, during foam cell formation, angiotensin II generation by the endogenous RAS is stimulated and that endogenously generated angiotensin II is crucial for cholesterol ester accumulation in macrophages exposed to modified LDL.


Asunto(s)
Angiotensina II/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Acetil-CoA C-Acetiltransferasa/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Catepsina G/genética , Catepsina G/metabolismo , Línea Celular Tumoral , Ésteres del Colesterol/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Humanos , Macrófagos/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Renina/antagonistas & inhibidores , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina/genética , Receptores Depuradores de Clase A/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...