Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microsc ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818951

RESUMEN

The concept of electronic orbitals has enabled the understanding of a wide range of physical and chemical properties of solids through the definition of, for example, chemical bonding between atoms. In the transmission electron microscope, which is one of the most used and powerful analytical tools for high-spatial-resolution analysis of solids, the accessible quantity is the local distribution of electronic states. However, the interpretation of electronic state maps at atomic resolution in terms of electronic orbitals is far from obvious, not always possible, and often remains a major hurdle preventing a better understanding of the properties of the system of interest. In this review, the current state of the art of the experimental aspects for electronic state mapping and its interpretation as electronic orbitals is presented, considering approaches that rely on elastic and inelastic scattering, in real and reciprocal spaces. This work goes beyond resolving spectral variations between adjacent atomic columns, as it aims at providing deeper information about, for example, the spatial or momentum distributions of the states involved. The advantages and disadvantages of existing experimental approaches are discussed, while the challenges to overcome and future perspectives are explored in an effort to establish the current state of knowledge in this field. The aims of this review are also to foster the interest of the scientific community and to trigger a global effort to further enhance the current analytical capabilities of transmission electron microscopy for chemical bonding and electronic structure analysis.

2.
Phys Rev Lett ; 128(11): 116401, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363018

RESUMEN

The spatial distributions of antibonding π^{*} and σ^{*} states in epitaxial graphene multilayers are mapped using electron energy-loss spectroscopy in a scanning transmission electron microscope. Inelastic channeling simulations validate the interpretation of the spatially resolved signals in terms of electronic orbitals, and demonstrate the crucial effect of the material thickness on the experimental capability to resolve the distribution of unoccupied states. This work illustrates the current potential of core-level electron energy-loss spectroscopy towards the direct visualization of electronic orbitals in a wide range of materials, of huge interest to better understand chemical bonding among many other properties at interfaces and defects in solids.

3.
Science ; 367(6482): 1124-1127, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32139541

RESUMEN

Single-atom impurities and other atomic-scale defects can notably alter the local vibrational responses of solids and, ultimately, their macroscopic properties. Using high-resolution electron energy-loss spectroscopy in the electron microscope, we show that a single substitutional silicon impurity in graphene induces a characteristic, localized modification of the vibrational response. Extensive ab initio calculations reveal that the measured spectroscopic signature arises from defect-induced pseudo-localized phonon modes-that is, resonant states resulting from the hybridization of the defect modes and the bulk continuum-with energies that can be directly matched to the experiments. This finding realizes the promise of vibrational spectroscopy in the electron microscope with single-atom sensitivity and has broad implications across the fields of physics, chemistry, and materials science.

4.
Phys Rev Lett ; 122(1): 016103, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012678

RESUMEN

Advances in source monochromation in transmission electron microscopy have opened up new possibilities for investigations of condensed matter using the phonon-loss sector of the energy-loss spectrum. Here, we explore the spatial variations of the spectrum as an atomic-sized probe is scanned across a thin flake of hexagonal boron nitride. We demonstrate that phonon spectral mapping of atomic structure is possible. These results are consistent with a model for the quantum excitation of phonons and confirm that Z-contrast imaging is based on inelastic scattering associated with phonon excitation.

5.
Nat Commun ; 9(1): 2619, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976983

RESUMEN

Materials with the pyrochlore/fluorite structure have diverse technological applications, from magnetism to nuclear waste disposal. Here we report the observation of structural instability present in the pyrochlores A2Zr2O6O' (A = Pr, La) and Yb2Ti2O6O', that exists despite ideal stoichiometry, ideal cation-ordering, the absence of lone pair effects, and a lack of magnetic order. Though these materials appear to have good long-range order, local structure probes find displacements, of the order of 0.01 nm, within the pyrochlore framework. The pattern of displacements of the A2O' sublattice mimics the entropically-driven fluxional motions characteristic of and well-known in the silica mineral ß-cristobalite. The universality of such displacements within the pyrochlore structure adds to the known structural diversity and explains the extreme sensitivity to composition found in quantum spin ices and the lack of ferroelectric behavior in pyrochlores.

6.
Microscopy (Oxf) ; 67(suppl_1): i1-i2, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29584930
7.
Sci Rep ; 7(1): 11774, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924173

RESUMEN

Yttrium iron garnet has a very high Verdet constant, is transparent in the infrared and is an insulating ferrimagnet leading to its use in optical and magneto-optical applications. Its high Q-factor has been exploited to make resonators and filters in microwave devices, but it also has the lowest magnetic damping of any known material. In this article we describe the structural and magnetic properties of single crystal thin-film YIG where the temperature dependence of the magnetisation reveals a decrease in the low temperature region. In order to understand this complex material we bring a large number of structural and magnetic techniques to bear on the same samples. Through a comprehensive analysis we show that at the substrate -YIG interface, an interdiffusion zone of only 4-6 nm exists. Due to the interdiffusion of Y from the YIG and Gd from the substrate, an addition magnetic layer is formed at the interface whose properties are crucially important in samples with a thickness of YIG less than 200 nm.

8.
J Phys Condens Matter ; 29(22): 225303, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28394256

RESUMEN

Electron energy loss spectroscopy (EELS) is a powerful tool for understanding the chemical structure of materials down to the atomic level, but challenges remain in accurately and quantitatively modelling the response. We compare comprehensive theoretical density functional theory (DFT) calculations of 1s core-level EEL K-edge spectra of pure, B-doped and N-doped graphene with and without a core-hole to previously published atomic-resolution experimental electron microscopy data. The ground state approximation is found in this specific system to perform consistently better than the frozen core-hole approximation. The impact of including or excluding a core-hole on the resultant theoretical band structures, densities of states, electron densities and EEL spectra were all thoroughly examined and compared. It is concluded that the frozen core-hole approximation exaggerates the effects of the core-hole in graphene and should be discarded in favour of the ground state approximation. These results are interpreted as an indicator of the overriding need for theorists to embrace many-body effects in the pursuit of accuracy in theoretical spectroscopy instead of a system-tailored approach whose approximations are selected empirically.

9.
Ultramicroscopy ; 176: 31-36, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28012570

RESUMEN

Functionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS2 are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS2 can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds.

10.
Sci Rep ; 6: 26549, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27221782

RESUMEN

We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.

11.
Analyst ; 141(12): 3562-72, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27067797

RESUMEN

Both photons and electrons may be used to excite surface plasmon polaritons, the collective charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real space-time ultimately requires joint nanometer spatial and femtosecond temporal resolution. The latter realization has driven significant developments in the past few years, aimed at interrogating both localized and propagating SP modes. In this mini-review, we briefly highlight different techniques employed by our own groups to visualize the enhanced electric fields associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as correlated scanning transmission electron microscopy-electron energy loss spectroscopy measurements targeting prototypical plasmonic nanostructures and constructs. Through selected practical examples from our own laboratories, we examine the information content in multidimensional images recorded by taking advantage of each of the aforementioned techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and time.

12.
Phys Chem Chem Phys ; 17(8): 5565-8, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25626491

RESUMEN

Copper on gold forms a monolayer deposit via underpotential deposition. For gold particles adsorbed at a liquid-liquid interface this results in a uniform one monolayer thick shell. This approach offers a new route for the uniform functionalisation of nanoparticles and presents a way to probe fundamental processes that underlie nanoparticle synthesis.

13.
J Mater Chem C Mater ; 3(47): 12245-12259, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28496979

RESUMEN

A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO3. High quality Sr-Mo co-substituted CaMnO3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101}orthorhombic; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn3+ in the Mn4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit (ZT) values higher than 0.1 at temperatures above 850 K. Ca0.7Sr0.3Mn0.96Mo0.04O3 ceramics exhibit enhanced properties with S1000K = -180 µV K-1, ρ1000K = 5 × 10-5 Ωm, k1000K = 1.8 W m-1 K-1 and ZT ≈ 0.11 at 1000 K.

14.
Sci Rep ; 4: 6334, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25284688

RESUMEN

Ion irradiation has been observed to induce a macroscopic flattening and in-plane shrinkage of graphene sheets without a complete loss of crystallinity. Electron diffraction studies performed during simultaneous in-situ ion irradiation have allowed identification of the fluence at which the graphene sheet loses long-range order. This approach has facilitated complementary ex-situ investigations, allowing the first atomic resolution scanning transmission electron microscopy images of ion-irradiation induced graphene defect structures together with quantitative analysis of defect densities using Raman spectroscopy.

15.
Nanoscale ; 6(3): 1833-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24356681

RESUMEN

The dielectric response of pentagonal defects in multilayer graphene nano-cones has been studied by electron energy loss spectroscopy and ab initio simulations. At the cone apex, a strong modification of the dielectric response is observed below the energy of the π plasmon resonance. This is attributed to π → π* interband transitions induced by topology-specific resonant π bonding states as well as π*-σ* hybridization. It is concluded that pentagonal defects strongly affect the local electronic structure in such a way that multi-walled graphene nano-cones should show great promise as field emitters.

16.
Nano Lett ; 13(10): 4902-7, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24059439

RESUMEN

Doping of graphene via low energy ion implantation could open possibilities for fabrication of nanometer-scale patterned graphene-based devices as well as for graphene functionalization compatible with large-scale integrated semiconductor technology. Using advanced electron microscopy/spectroscopy methods, we show for the first time directly that graphene can be doped with B and N via ion implantation and that the retention is in good agreement with predictions from calculation-based literature values. Atomic resolution high-angle dark field imaging (HAADF) combined with single-atom electron energy loss (EEL) spectroscopy reveals that for sufficiently low implantation energies ions are predominantly substitutionally incorporated into the graphene lattice with a very small fraction residing in defect-related sites.


Asunto(s)
Grafito/química , Nanoestructuras , Semiconductores , Iones/química , Microscopía Electrónica , Propiedades de Superficie
17.
J Phys Condens Matter ; 24(29): 295503, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22739407

RESUMEN

Energy loss spectra from fluorite-structured ZrO(2), CeO(2), and UO(2) compounds are compared with theoretical calculations based on density functional theory (DFT) and its extensions, including the use of Hubbard-U corrections (DFT + U) and hybrid functionals. Electron energy loss spectra (EELS) were obtained from each oxide using a scanning transmission electron microscope (STEM). The same spectra were computed within the framework of the full-potential linear augmented plane-wave (FLAPW) method. The theoretical and experimental EEL spectra are compared quantitatively using non-linear least squares peak fitting and a cross-correlation approach, with the best level of agreement between experiment and theory being obtained using the DFT + U and hybrid computational approaches.


Asunto(s)
Electrones , Óxidos/química , Teoría Cuántica , Espectroscopía de Pérdida de Energía de Electrones , Análisis de los Mínimos Cuadrados
18.
Proc Natl Acad Sci U S A ; 109(25): 9710-5, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22647612

RESUMEN

The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon.

19.
J Microsc ; 244(2): 152-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21711460

RESUMEN

Experimental atomic resolution bright and high angle dark field transmission electron microscopy images of mono- and few-layer graphene and boron nitride, as well as of turbostratic arrangements in both materials, are compared to their simulated counterparts. Changes in the images according to defocus, layer number and accelerating voltage are discussed. It emerges that simulations with realistic microscope parameters accurately depict experimental graphene and boron nitride images and present a reliable tool for their interpretation.

20.
Micron ; 42(6): 539-46, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21376607

RESUMEN

The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.


Asunto(s)
Metales/química , Microscopía Electrónica de Transmisión de Rastreo/métodos , Espectroscopía de Pérdida de Energía de Electrones/métodos , Electrones , Transferencia de Energía , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Transmisión de Rastreo/instrumentación , Espectroscopía de Pérdida de Energía de Electrones/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...