Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(17): 17516-17526, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37606956

RESUMEN

Due to their superior optoelectronic properties, monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for electroluminescent devices. However, challenges in isolating optoelectronically active TMD monolayers using scalable liquid phase exfoliation have precluded electroluminescence in large-area, solution-processed TMD films. Here, we overcome these limitations and demonstrate electroluminescence from molybdenum disulfide (MoS2) nanosheet films by employing a monolayer-rich MoS2 ink produced by electrochemical intercalation and megasonic exfoliation. Characteristic monolayer MoS2 photoluminescence and electroluminescence spectral peaks at 1.88-1.90 eV are observed in megasonicated MoS2 films, with the emission intensity increasing with film thickness over the range 10-70 nm. Furthermore, employing a vertical light-emitting capacitor architecture enables uniform electroluminescence in large-area devices. These results indicate that megasonically exfoliated MoS2 monolayers retain their direct bandgap character in electrically percolating thin films even following multistep solution processing. Overall, this work establishes megasonicated MoS2 inks as an additive manufacturing platform for flexible, patterned, and miniaturized light sources that can likely be expanded to other TMD semiconductors.

2.
2d Mater ; 9(3)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35785019

RESUMEN

Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg/mL for Spike RBD and 110.38 ± 9.00 pg/mL for Spike S1) as well as fast response time (~30 mins), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng/mL and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.

3.
Adv Mater ; 34(34): e2203772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35788996

RESUMEN

Printed 2D materials, derived from solution-processed inks, offer scalable and cost-effective routes to mechanically flexible optoelectronics. With micrometer-scale control and broad processing latitude, aerosol-jet printing (AJP) is of particular interest for all-printed circuits and systems. Here, AJP is utilized to achieve ultrahigh-responsivity photodetectors consisting of well-aligned, percolating networks of semiconducting MoS2 nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high-aspect-ratio (≈1 µm lateral size) MoS2 nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high-boiling-point solvent terpineol into the MoS2 ink is critical for achieving a highly aligned and flat thin-film morphology following AJP as confirmed by grazing-incidence wide-angle X-ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi-ohmic contacts and photoactive channels with responsivities exceeding 103  A W-1 that outperform previously reported all-printed visible-light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2 nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.

4.
ACS Appl Mater Interfaces ; 13(35): 42195-42204, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34449192

RESUMEN

Measuring the maximum operating temperature within the channel of ultrawide band-gap transistors is critically important since the temperature dependence of the device reliability sets operational limits such as maximum operational power. Thermoreflectance imaging (TTI) is an optimal choice to measure the junction temperature due to its submicrometer spatial resolution and submicrosecond temporal resolution. Since TTI is an imaging technique, data acquisition is orders of magnitude faster than point measurement techniques such as Raman thermometry. Unfortunately, commercially available LED light sources used in thermoreflectance systems are limited to energies less than ∼3.9 eV, which is below the band gap of many ultrawide band-gap semiconductors (>4.0 eV). Therefore, the semiconductors are transparent to the probing light sources, prohibiting the application of TTI. To address this thermal imaging challenge, we utilize an MoS2 coating as a thermoreflectance enhancement coating that allows for the measurement of the surface temperature of (ultra)wide band-gap materials. The coating consists of a network of MoS2 nanoflakes with the c axis aligned normal to the surface and is easily removable via sonication. The method is validated using electrical and thermal characterization of GaN and AlGaN devices. We demonstrate that this coating does not measurably influence the electrical performance or the measured operating temperature. A maximum temperature rise of 49 K at 0.59 W was measured within the channel of the AlGaN device, which is over double the maximum temperature rise obtained by measuring the thermoreflectance of the gate metal. The importance of accurately measuring the peak operational temperature is discussed in the context of accelerated stress testing.

5.
ACS Appl Mater Interfaces ; 12(7): 8592-8603, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32040290

RESUMEN

Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 µm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Grafito/química , Interferón gamma/sangre , Interleucina-10/sangre , Nanoestructuras/química , Impresión Tridimensional/instrumentación , Aerosoles/química , Animales , Anticuerpos/inmunología , Técnicas Biosensibles/instrumentación , Dióxido de Carbono/química , Bovinos , Colodión/química , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Imidas/química , Tinta , Interferón gamma/inmunología , Interleucina-10/inmunología , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Confocal , Nanoestructuras/ultraestructura , Polímeros , Especies Reactivas de Oxígeno/química , Análisis Espectral , Espectrometría Raman , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...