Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ Comput Sci ; 10: e1813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435563

RESUMEN

Background: Blood diseases such as leukemia, anemia, lymphoma, and thalassemia are hematological disorders that relate to abnormalities in the morphology and concentration of blood elements, specifically white blood cells (WBC) and red blood cells (RBC). Accurate and efficient diagnosis of these conditions significantly depends on the expertise of hematologists and pathologists. To assist the pathologist in the diagnostic process, there has been growing interest in utilizing computer-aided diagnostic (CAD) techniques, particularly those using medical image processing and machine learning algorithms. Previous surveys in this domain have been narrowly focused, often only addressing specific areas like segmentation or classification but lacking a holistic view like segmentation, classification, feature extraction, dataset utilization, evaluation matrices, etc. Methodology: This survey aims to provide a comprehensive and systematic review of existing literature and research work in the field of blood image analysis using deep learning techniques. It particularly focuses on medical image processing techniques and deep learning algorithms that excel in the morphological characterization of WBCs and RBCs. The review is structured to cover four main areas: segmentation techniques, classification methodologies, descriptive feature selection, evaluation parameters, and dataset selection for the analysis of WBCs and RBCs. Results: Our analysis reveals several interesting trends and preferences among researchers. Regarding dataset selection, approximately 50% of research related to WBC segmentation and 60% for RBC segmentation opted for manually obtaining images rather than using a predefined dataset. When it comes to classification, 45% of the previous work on WBCs chose the ALL-IDB dataset, while a significant 73% of researchers focused on RBC classification decided to manually obtain images from medical institutions instead of utilizing predefined datasets. In terms of feature selection for classification, morphological features were the most popular, being chosen in 55% and 80% of studies related to WBC and RBC classification, respectively. Conclusion: The diagnostic accuracy for blood-related diseases like leukemia, anemia, lymphoma, and thalassemia can be significantly enhanced through the effective use of CAD techniques, which have evolved considerably in recent years. This survey provides a broad and in-depth review of the techniques being employed, from image segmentation to classification, feature selection, utilization of evaluation matrices, and dataset selection. The inconsistency in dataset selection suggests a need for standardized, high-quality datasets to strengthen the diagnostic capabilities of these techniques further. Additionally, the popularity of morphological features indicates that future research could further explore and innovate in this direction.

2.
PLoS One ; 18(10): e0283568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788295

RESUMEN

Precise segmentation of the nucleus is vital for computer-aided diagnosis (CAD) in cervical cytology. Automated delineation of the cervical nucleus has notorious challenges due to clumped cells, color variation, noise, and fuzzy boundaries. Due to its standout performance in medical image analysis, deep learning has gained attention from other techniques. We have proposed a deep learning model, namely C-UNet (Cervical-UNet), to segment cervical nuclei from overlapped, fuzzy, and blurred cervical cell smear images. Cross-scale features integration based on a bi-directional feature pyramid network (BiFPN) and wide context unit are used in the encoder of classic UNet architecture to learn spatial and local features. The decoder of the improved network has two inter-connected decoders that mutually optimize and integrate these features to produce segmentation masks. Each component of the proposed C-UNet is extensively evaluated to judge its effectiveness on a complex cervical cell dataset. Different data augmentation techniques were employed to enhance the proposed model's training. Experimental results have shown that the proposed model outperformed extant models, i.e., CGAN (Conditional Generative Adversarial Network), DeepLabv3, Mask-RCNN (Region-Based Convolutional Neural Network), and FCN (Fully Connected Network), on the employed dataset used in this study and ISBI-2014 (International Symposium on Biomedical Imaging 2014), ISBI-2015 datasets. The C-UNet achieved an object-level accuracy of 93%, pixel-level accuracy of 92.56%, object-level recall of 95.32%, pixel-level recall of 92.27%, Dice coefficient of 93.12%, and F1-score of 94.96% on complex cervical images dataset.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Prueba de Papanicolaou , Frotis Vaginal , Diagnóstico por Computador
3.
Comput Biol Med ; 147: 105807, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809409

RESUMEN

The healthcare sector is the highest priority sector, and people demand the highest services and care. The fast rise of deep learning, particularly in clinical decision support tools, has provided exciting solutions primarily in medical imaging. In the past, ANNs (artificial neural networks) have been used extensively in dermatology and have shown promising results for detecting various skin diseases. Eczema represents a group of skin conditions characterized by irritated, dry, inflamed, and itchy skin. This study extends great help to automate the diagnosis process of various kinds of eczema through a Hybrid model that uses concatenated ReliefF optimized handcrafted and deep activated features and a support vector machine for classification. Deep learning models and standard image processing techniques have been used to classify eczema from images automatically. This work contributes to the first multiclass image dataset, namely EIR (Eczema image resource). The EIR dataset consists of 2039 labeled eczema images belonging to seven categories. We performed a comparative analysis of multiple ensemble models, attention mechanisms, and data augmentation techniques for this task. The respective accuracy, sensitivity, and specificity, for eczema classification by classifiers were recorded. In comparison, the proposed Hybrid 6 network achieved the highest accuracy of 88.29%, sensitivity of 85.19%, and specificity of 90.33%% among all employed models. Our findings suggest that deep learning models can classify eczema with high accuracy, and their performance is comparable to dermatologists. However, many factors have been elucidated that contribute to reducing accuracy and potential scope for improvement.


Asunto(s)
Eccema , Enfermedades de la Piel , Diagnóstico por Imagen , Eccema/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...