Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37894886

RESUMEN

Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.


Asunto(s)
Empalme Alternativo , Arabidopsis , Fitomejoramiento , Empalme del ARN , Arabidopsis/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Precursores del ARN/genética
3.
Cells ; 12(15)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37566065

RESUMEN

Calmodulin-binding transcription activators (CAMTAs), a small family of highly conserved transcription factors, function in calcium-mediated signaling pathways. Of the six CAMTAs in Arabidopsis, CAMTA3 regulates diverse biotic and abiotic stress responses. A recent study has shown that CAMTA3 is a guardee of NLRs (Nucleotide-binding, Leucine-rich repeat Receptors) in modulating plant immunity, raising the possibility that CAMTA3 transcriptional activity is dispensable for its function. Here, we show that the DNA-binding activity of CAMTA3 is essential for its role in mediating plant immune responses. Analysis of the DNA-binding (CG-1) domain of CAMTAs in plants and animals showed strong conservation of several amino acids. We mutated six conserved amino acids in the CG-1 domain to investigate their role in CAMTA3 function. Electrophoretic mobility shift assays using these mutants with a promoter of its target gene identified critical amino acid residues necessary for DNA-binding activity. In addition, transient assays showed that these residues are essential for the CAMTA3 function in activating the Rapid Stress Response Element (RSRE)-driven reporter gene expression. In line with this, transgenic lines expressing the CG-1 mutants of CAMTA3 in the camta3 mutant failed to rescue the mutant phenotype and restore the expression of CAMTA3 downstream target genes. Collectively, our results provide biochemical and genetic evidence that the transcriptional activity of CAMTA3 is indispensable for its function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Animales , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN/metabolismo , Factores de Transcripción/metabolismo
4.
Genome Biol ; 24(1): 53, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949544

RESUMEN

BACKGROUND: Alternative splicing is a widespread regulatory phenomenon that enables a single gene to produce multiple transcripts. Among the different types of alternative splicing, intron retention is one of the least explored despite its high prevalence in both plants and animals. The recent discovery that the majority of splicing is co-transcriptional has led to the finding that chromatin state affects alternative splicing. Therefore, it is plausible that transcription factors can regulate splicing outcomes. RESULTS: We provide evidence for the hypothesis that transcription factors are involved in the regulation of intron retention by studying regions of open chromatin in retained and excised introns. Using deep learning models designed to distinguish between regions of open chromatin in retained introns and non-retained introns, we identified motifs enriched in IR events with significant hits to known human transcription factors. Our model predicts that the majority of transcription factors that affect intron retention come from the zinc finger family. We demonstrate the validity of these predictions using ChIP-seq data for multiple zinc finger transcription factors and find strong over-representation for their peaks in intron retention events. CONCLUSIONS: This work opens up opportunities for further studies that elucidate the mechanisms by which transcription factors affect intron retention and other forms of splicing. AVAILABILITY: Source code available at https://github.com/fahadahaf/chromir.


Asunto(s)
Empalme Alternativo , Factores de Transcripción , Animales , Humanos , Intrones , Factores de Transcripción/genética , Empalme del ARN , Cromatina/genética
5.
Physiol Mol Biol Plants ; 29(12): 1813-1824, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222273

RESUMEN

CAMTA3, a Ca2+-regulated transcription factor, is a repressor of plant immune responses. A truncated version of CAMTA3; CAMTA3334 called N-terminal repression module (NRM), and its extended version (CAMTA447), which include the DNA binding domain, were previously reported to complement the camta3/2 mutant phenotype. Here, we generated a series of CAMTA3 truncated versions [the N-terminus (aa 1-517), C-terminus (aa 517-1032), R1 (aa 1-173), R2 (aa 174-345), R3 (aa 346-517), R4 (aa 517-689), R5 (aa 690-861) and R6 (aa 862-1032)], expressed in camta3 mutant and analyzed the phenotypes of the transgenic lines. Interestingly, unlike CAMTA447, extending the N-terminal region to 517 aa did not complement the camta3 phenotype, suggesting that the amino acid region from 448-517 (70 aa), which includes a part of the TIG domain suppresses the NRM activity. The C-terminus and other truncated versions (R1-R6) also failed to complement the camta3 mutant. Expressing the full length or NRM of CAMTA3 in camta3 plants suppressed the activation of immune-responsive genes and increased the expression of cold-induced genes. In contrast, the transgenic lines expressing the N- or C-terminus or R1-R6 of CAMTA3 showed expression patterns like those of the camta3 with enhanced expression of the defense genes and suppressed expression of the cold response genes. Furthermore, like camta3, the transgenic lines expressing the N- or C-terminus, or R1-R6 of CAMTA3 exhibited higher levels of H2O2 and increased resistance to a Pst DC3000 as compared to WT, NRM, or FL-CAMTA3 transgenic plants. Our studies identified a novel regulatory region in CAMTA3 that suppresses the NRM activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01401-w.

6.
Proc Natl Acad Sci U S A ; 119(44): e2214565119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282917

RESUMEN

Light signals perceived by a group of photoreceptors have profound effects on the physiology, growth, and development of plants. The red/far-red light-absorbing phytochromes (phys) modulate these aspects by intricately regulating gene expression at multiple levels. Here, we report the identification and functional characterization of an RNA-binding splicing factor, SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1). Loss-of-function swap1-1 mutant is hyposensitive to red light and exhibits a day length-independent early flowering phenotype. SWAP1 physically interacts with two other splicing factors, (SFPS) SPLICING FACTOR FOR PHYTOCHROME SIGNALING and (RRC1) REDUCED RED LIGHT RESPONSES IN CRY1CRY2 BACKGROUND 1 in a light-independent manner and forms a ternary complex. In addition, SWAP1 physically interacts with photoactivated phyB and colocalizes with nuclear phyB photobodies. Phenotypic analyses show that the swap1sfps, swap1rrc1, and sfpsrrc1 double mutants display hypocotyl lengths similar to that of the respective single mutants under red light, suggesting that they function in the same genetic pathway. The swap1sfps double and swap1sfpsrrc1 triple mutants display pleiotropic phenotypes, including sterility at the adult stage. Deep RNA sequencing (RNA-seq) analyses show that SWAP1 regulates the gene expression and pre-messenger RNA (mRNA) alternative splicing of a large number of genes, including those involved in plant responses to light signaling. A comparative analysis of alternative splicing among single, double, and triple mutants showed that all three splicing factors coordinately regulate the alternative splicing of a subset of genes. Our study uncovered the function of a splicing factor that modulates light-regulated alternative splicing by interacting with photoactivated phyB and other splicing factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Luz , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
7.
Genome Biol ; 23(1): 149, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799267

RESUMEN

BACKGROUND: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS: We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS: AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.


Asunto(s)
Arabidopsis , Transcriptoma , Empalme Alternativo , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos
8.
Plant Physiol ; 190(1): 459-479, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35670753

RESUMEN

Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and translation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undetermined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially, a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length (PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.


Asunto(s)
Populus , Sequías , Regulación de la Expresión Génica de las Plantas , Populus/genética , Populus/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , ARN/metabolismo , Estrés Fisiológico/genética , Xilema/genética , Xilema/metabolismo
9.
Cells ; 11(11)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681491

RESUMEN

Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant rs33 showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and rs33 seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.


Asunto(s)
Oryza , Arginina/genética , Estudio de Asociación del Genoma Completo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Serina/genética , Estrés Fisiológico/genética
10.
BMC Bioinformatics ; 23(1): 142, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443610

RESUMEN

BACKGROUND: Despite recent progress in basecalling of Oxford nanopore DNA sequencing data, its wide adoption is still being hampered by its relatively low accuracy compared to short read technologies. Furthermore, very little of the recent research was focused on basecalling of RNA data, which has different characteristics than its DNA counterpart. RESULTS: We fill this gap by benchmarking a fully convolutional deep learning basecalling architecture with improved performance compared to Oxford nanopore's RNA basecallers. AVAILABILITY: The source code for our basecaller is available at: https://github.com/biodlab/RODAN .


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , ADN , Secuenciación de Nucleótidos de Alto Rendimiento , ARN , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217601

RESUMEN

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistencia a los Herbicidas/genética , Insecticidas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia , Brassicaceae/metabolismo , Dicamba , Simulación del Acoplamiento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , ARN de Planta/genética , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN/métodos
12.
Front Plant Sci ; 12: 655565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122478

RESUMEN

Populus trichocarpa (P. trichocarpa) is a model tree for the investigation of wood formation. In recent years, researchers have generated a large number of high-throughput sequencing data in P. trichocarpa. However, no comprehensive database that provides multi-omics associations for the investigation of secondary growth in response to diverse stresses has been reported. Therefore, we developed a public repository that presents comprehensive measurements of gene expression and post-transcriptional regulation by integrating 144 RNA-Seq, 33 ChIP-seq, and six single-molecule real-time (SMRT) isoform sequencing (Iso-seq) libraries prepared from tissues subjected to different stresses. All the samples from different studies were analyzed to obtain gene expression, co-expression network, and differentially expressed genes (DEG) using unified parameters, which allowed comparison of results from different studies and treatments. In addition to gene expression, we also identified and deposited pre-processed data about alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI). The post-transcriptional regulation, differential expression, and co-expression network datasets were integrated into a new P. trichocarpa Stem Differentiating Xylem (PSDX) database (http://forestry.fafu.edu.cn/db/SDX), which further highlights gene families of RNA-binding proteins and stress-related genes. The PSDX also provides tools for data query, visualization, a genome browser, and the BLAST option for sequence-based query. Much of the data is also available for bulk download. The availability of PSDX contributes to the research related to the secondary growth in response to stresses in P. trichocarpa, which will provide new insights that can be useful for the improvement of stress tolerance in woody plants.

13.
Commun Biol ; 4(1): 529, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953336

RESUMEN

The SF3B complex, a multiprotein component of the U2 snRNP of the spliceosome, plays a crucial role in recognizing branch point sequence and facilitates spliceosome assembly and activation. Several chemicals that bind SF3B1 and PHF5A subunits of the SF3B complex inhibit splicing. We recently generated a splicing inhibitor-resistant SF3B1 mutant named SF3B1 GEX1A RESISTANT 4 (SGR4) using CRISPR-mediated directed evolution, whereas splicing inhibitor-resistant mutant of PHF5A (Overexpression-PHF5A GEX1A Resistance, OGR) was generated by expressing an engineered version PHF5A-Y36C. Global analysis of splicing in wild type and these two mutants revealed the role of SF3B1 and PHF5A in splicing regulation. This analysis uncovered a set of genes whose intron retention is regulated by both proteins. Further analysis of these retained introns revealed that they are shorter, have a higher GC content, and contain shorter and weaker polypyrimidine tracts. Furthermore, splicing inhibition increased seedlings sensitivity to salt stress, consistent with emerging roles of splicing regulation in stress responses. In summary, we uncovered the functions of two members of the plant branch point recognition complex. The novel strategies described here should be broadly applicable in elucidating functions of splicing regulators, especially in studying the functions of redundant paralogs in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Empalmosomas/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/genética , Empalmosomas/genética
14.
Biology (Basel) ; 10(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917813

RESUMEN

Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.

15.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799602

RESUMEN

RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA-protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA-protein interactions in plants thus far and highlight the understanding of plant RNA-protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA-protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA-protein interactions for the study of gene regulation and RNA biology in plants.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Oryza/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Arabidopsis/metabolismo , Secuencia de Bases , Oryza/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Unión Proteica , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN de Planta/metabolismo , Proteínas de Unión al ARN/clasificación , Proteínas de Unión al ARN/metabolismo , Nicotiana/metabolismo , Transcriptoma
16.
Plant Biotechnol J ; 19(8): 1624-1643, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33706417

RESUMEN

Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account. Through analysis of synteny and detection of collinearity of homoeologous subgenomes, conserved and specific AS events across five wheat and grass species were identified. A global analysis of the regulation of AS in diploid grass and polyploid wheat grains revealed diversity in AS events not only between the endosperm, pericarp and embryo overdevelopment, but also between subgenomes. Analysis of AS in homoeologous triads of polyploid wheats revealed evolutionary divergence between gene-level and transcript-level regulation of embryogenesis. Evolutionary age analysis indicated that the generation of novel transcript isoforms has occurred in young genes at a more rapid rate than in ancient genes. These findings, together with the development of comprehensive AS resources for wheat and grass species, advance understanding of the evolution of regulatory features of AS during embryogenesis and grain development in wheat.


Asunto(s)
Empalme Alternativo , Triticum , Empalme Alternativo/genética , Desarrollo Embrionario , Evolución Molecular , Genoma de Planta/genética , Poliploidía , Proteómica , Triticum/genética
17.
J Integr Plant Biol ; 63(7): 1294-1308, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33570252

RESUMEN

Circular RNAs (circRNAs) are a recently discovered type of non-coding RNA derived from pre-mRNAs. R-loops consist of a DNA:RNA hybrid and the associated single-stranded DNA. In Arabidopsis thaliana, circRNA:DNA R-loops regulate alternative splicing (AS) of SEPALLATA3 (SEP3). However, the occurrence and functions of circRNAs and R-loops in Populus trichocarpa are largely unexplored. Here, we performed circRNA-enriched sequencing in the stem-differentiating xylem (SDX) of P. trichocarpa and identified 2,742 distinct circRNAs, including circ-CESA4, circ-IRX7, and circ-GUX1, which are generated from genes involved in cellulose, and hemicellulose biosynthesis, respectively. To investigate the roles of circRNAs in modulating alternative splicing (AS), we detected 7,836 AS events using PacBio Iso-Seq and identified 634 circRNAs that overlapped with 699 AS events. Furthermore, using DNA:RNA hybrid immunoprecipitation followed by sequencing (DRIP-seq), we identified 8,932 R-loop peaks that overlapped with 181 circRNAs and 672 AS events. Notably, several SDX-related circRNAs overlapped with R-loop peaks, pointing to their possible roles in modulating AS in SDX. Indeed, overexpressing circ-IRX7 increased the levels of R-loop structures and decreased the frequency of intron retention in linear IRX7 transcripts. This study provides a valuable R-loop atlas resource and uncovers the interplay between circRNAs and AS in SDX of P. trichocarpa.


Asunto(s)
Empalme Alternativo/fisiología , Populus/metabolismo , ARN Circular/metabolismo , Empalme Alternativo/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Populus/genética , Estructuras R-Loop/genética , Estructuras R-Loop/fisiología , ARN Circular/genética , Xilema/genética , Xilema/metabolismo
18.
Genome Biol ; 22(1): 22, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413586

RESUMEN

There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the estimation of m6A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m6A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m6A-sensitive RNA-endoribonuclease-facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m6A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m6A.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/metabolismo , Secuenciación de Nanoporos , Nanoporos , Populus/metabolismo , Análisis de Secuencia de ARN , Xilema/metabolismo , Adenosina/genética , Algoritmos , Secuencia de Bases , Diferenciación Celular , Perfilación de la Expresión Génica , Inmunoprecipitación , Poliadenilación , Populus/genética , Transcriptoma , Xilema/genética
19.
New Phytol ; 229(4): 1937-1945, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33135169

RESUMEN

Alternative splicing (AS) is a major gene regulatory mechanism in plants. Recent evidence supports co-transcriptional splicing in plants, hence the chromatin state can impact AS. However, how dynamic changes in the chromatin state such as nucleosome occupancy influence the cold-induced AS remains poorly understood. Here, we generated transcriptome (RNA-Seq) and nucleosome positioning (MNase-Seq) data for Arabidopsis thaliana to understand how nucleosome positioning modulates cold-induced AS. Our results show that characteristic nucleosome occupancy levels are strongly associated with the type and abundance of various AS events under normal and cold temperature conditions in Arabidopsis. Intriguingly, exitrons, alternatively spliced internal regions of protein-coding exons, exhibit distinctive nucleosome positioning pattern compared to other alternatively spliced regions. Likewise, nucleosome patterns differ between exitrons and retained introns, pointing to their distinct regulation. Collectively, our data show that characteristic changes in nucleosome positioning modulate AS in plants in response to cold.


Asunto(s)
Arabidopsis , Empalme Alternativo/genética , Arabidopsis/genética , Cromatina , Intrones , Nucleosomas
20.
Biochem Soc Trans ; 48(6): 2399-2414, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33196096

RESUMEN

Next-generation sequencing (NGS) technologies - Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/post-transcriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. The emerging theme from recent studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post-transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/post-transcriptional splicing are largely unknown, a few recent studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches.


Asunto(s)
Proteínas de Plantas/metabolismo , Transcriptoma , Empalme Alternativo , Arabidopsis/genética , Secuencia de Bases , Cromatina/química , Cromatina/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Isoformas de Proteínas , Procesamiento Postranscripcional del ARN , Empalme del ARN , RNA-Seq , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...