Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-21502408

RESUMEN

Chromatin affects many, if not all aspects, of nuclear organization and function. For this reason, we have focused our attention on elucidating some of the basic mechanisms regulating the formation and maintenance of chromatin, specifically concerning Polycomb repressive complex 2 (PRC2) and PR-Set7. PRC2 is responsible for catalyzing trimethylation of lysine 27 of histone H3 and thus has a critical role in the formation of facultative heterochromatin. PR-Set7 is responsible for catalyzing monomethylation of lysine 20 of histone H4 and is required for proper cell cycle progression and DNA damage response. We have also expanded our work to establish novel techniques and approaches to determine how chromatin is spatially regulated within the nuclear landscape.


Asunto(s)
Cromatina/metabolismo , Animales , Ciclo Celular , Daño del ADN , Heterocromatina/metabolismo , Humanos , Proteínas del Grupo Polycomb , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo
2.
Oncogene ; 26(37): 5505-20, 2007 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-17694090

RESUMEN

Histone deacetylases (HDACs) catalyse the removal of acetyl groups from the N-terminal tails of histones. All known HDACs can be categorized into one of four classes (I-IV). The class III HDAC or silencing information regulator 2 (Sir2) family exhibits characteristics consistent with a distinctive role in regulation of chromatin structure. Accumulating data suggest that these deacetylases acquired new roles as genomic complexity increased, including deacetylation of non-histone proteins and functional diversification in mammals. However, the intrinsic regulation of chromatin structure in species as diverse as yeast and humans, underscores the pressure to conserve core functions of class III HDACs, which are also known as Sirtuins. One of the key factors that might have contributed to this preservation is the intimate relationship between some members of this group of proteins (SirT1, SirT2 and SirT3) and deacetylation of a specific residue in histone H4, lysine 16 (H4K16). Evidence accumulated over the years has uncovered a unique role for H4K16 in chromatin structure throughout eukaryotes. Here, we review the recent findings about the functional relationship between H4K16 and the Sir2 class of deacetylases and how that relationship might impact aging and diseases including cancer and diabetes.


Asunto(s)
Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , NAD/metabolismo , Sirtuinas/metabolismo , Acetilación , Envejecimiento/metabolismo , Diabetes Mellitus/enzimología , Humanos , Neoplasias/enzimología
4.
Mol Cell Biol ; 22(3): 835-48, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11784859

RESUMEN

Sin3 is an evolutionarily conserved corepressor that exists in different complexes with the histone deacetylases HDAC1 and HDAC2. Sin3-HDAC complexes are believed to deacetylate nucleosomes in the vicinity of Sin3-regulated promoters, resulting in a repressed chromatin structure. We have previously found that a human Sin3-HDAC complex includes HDAC1 and HDAC2, the histone-binding proteins RbAp46 and RbAp48, and two novel polypeptides SAP30 and SAP18. SAP30 is a specific component of Sin3 complexes since it is absent in other HDAC1/2-containing complexes such as NuRD. SAP30 mediates interactions with different polypeptides providing specificity to Sin3 complexes. We have identified p33ING1b, a negative growth regulator involved in the p53 pathway, as a SAP30-associated protein. Two distinct Sin3-p33ING1b-containing complexes were isolated, one of which associates with the subunits of the Brg1-based Swi/Snf chromatin remodeling complex. The N terminus of p33ING1b, which is divergent among a family of ING1 polypeptides, associates with the Sin3 complex through direct interaction with SAP30. The N-terminal domain of p33 is present in several uncharacterized human proteins. We show that overexpression of p33ING1b suppresses cell growth in a manner dependent on the intact Sin3-HDAC-interacting domain.


Asunto(s)
División Celular/fisiología , Proteínas de Drosophila , Inhibidores de Crecimiento/metabolismo , Histona Desacetilasas/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Ciclo Celular , Línea Celular , ADN Helicasas , ADN Complementario/genética , Proteínas de Unión al ADN , Genes Supresores de Tumor , Inhibidores de Crecimiento/genética , Células HeLa , Histona Desacetilasa 2 , Histona Desacetilasas/química , Humanos , Proteína Inhibidora del Crecimiento 1 , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Homología de Secuencia de Aminoácido , Complejo Correpresor Histona Desacetilasa y Sin3 , Factores de Transcripción/química , Proteínas Supresoras de Tumor
6.
Genes Dev ; 15(21): 2837-51, 2001 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11691835

RESUMEN

The human ISWI-containing factor RSF (remodeling and spacing factor) was found to mediate nucleosome deposition and, in the presence of ATP, generate regularly spaced nucleosome arrays. Using this system, recombinant chromatin was reconstituted with bacterially produced histones. Acetylation of the histone tails was found to play an important role in establishing regularly spaced nucleosome arrays. Recombinant chromatin lacking histone acetylation was impaired in directing transcription. Histone-tail modifications were found to regulate transcription from the recombinant chromatin. Acetylation of the histone tails by p300 was found to increase transcription. Methylation of the histone H3 tail by Suv39H1 was found to repress transcription in an HP1-dependent manner. The effects of histone-tail modifications were observed in nuclear extracts. A highly reconstituted RNA polymerase II transcription system was refractory to the effect imposed by acetylation and methylation.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Histonas/química , Proteínas Recombinantes/metabolismo , Transcripción Genética , Southern Blotting , Núcleo Celular/metabolismo , Metilación de ADN , Etidio/farmacología , Células HeLa , Histonas/metabolismo , Histonas/ultraestructura , Humanos , Sustancias Intercalantes/farmacología , Microscopía Electrónica , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo
8.
J Biol Chem ; 276(28): 25736-41, 2001 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-11344167

RESUMEN

The structure-specific recognition protein SSRP1, initially isolated from expression screening of a human B-cell cDNA library for proteins that bind to cisplatin (cis-diamminedichloroplatinum(II))-modified DNA, contains a single DNA-binding high mobility group (HMG) domain. Human SSRP1 purifies as a heterodimer of SSRP1 and Spt16 (FACT) that alleviates the nucleosomal block to transcription elongation by RNAPII in vitro. The affinity and specificity of FACT, SSRP1, and the isolated HMG domain of SSRP1 for cisplatin-damaged DNA were investigated by gel mobility shift assays. FACT exhibits both affinity and specificity for DNA damaged globally with cisplatin compared with unmodified DNA or DNA damaged globally with the clinically ineffective trans-DDP isomer. FACT binds the major 1,2-d(GpG) intrastrand cisplatin adduct, but its isolated SSRP1 subunit fails to form discrete, high affinity complexes with cisplatin-modified DNA under similar conditions. These results suggest that Spt16 primes SSRP1 for cisplatin-damaged DNA recognition by unveiling its HMG domain. As expected, the isolated HMG domain of SSRP1 is sufficient for specific binding to cisplatin-damaged DNA and binds the major cisplatin 1,2-d(GpG) intrastrand cross-link. The affinity and specificity of FACT for cisplatin-modified DNA, as well as its importance for transcription of chromatin, suggests that the interaction of FACT and cisplatin-damaged DNA may be crucial to the anticancer mechanism of cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Factores de Transcripción/genética , Factores de Elongación Transcripcional , Secuencia de Aminoácidos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Datos de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/genética
9.
Mol Cell Biol ; 21(8): 2918-32, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11283269

RESUMEN

Retinoblastoma (RB) tumor suppressor family pocket proteins induce cell cycle arrest by repressing transcription of E2F-regulated genes through both histone deacetylase (HDAC)-dependent and -independent mechanisms. In this study we have identified a stable complex that accounts for the recruitment of both repression activities to the pocket. One component of this complex is RBP1, a known pocket-binding protein that exhibits both HDAC-dependent and -independent repression functions. RB family proteins were shown to associate via the pocket with previously identified mSIN3-SAP30-HDAC complexes containing exclusively class I HDACs. Such enzymes do not interact directly with RB family proteins but rather utilize RBP1 to target the pocket. This mechanism was shown to account for the majority of RB-associated HDAC activity. We also show that in quiescent normal human cells this entire RBP1-mSIN3-SAP30-HDAC complex colocalizes with both RB family members and E2F4 in a limited number of discrete regions of the nucleus that in other studies have been shown to represent the initial origins of DNA replication following growth stimulation. These results suggest that RB family members, at least in part, drive exit from the cell cycle by recruitment of this HDAC complex via RBP1 to repress transcription from E2F-dependent promoters and possibly to alter chromatin structure at DNA origins.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Histona Desacetilasas/metabolismo , Interfase/fisiología , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Transporte Biológico Activo , Línea Celular , Núcleo Celular/metabolismo , Factores de Transcripción E2F , Factor de Transcripción E2F4 , Histona Desacetilasas/química , Histona Desacetilasas/genética , Humanos , Técnicas In Vitro , Sustancias Macromoleculares , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Modelos Biológicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína 1 de Unión a Retinoblastoma , Complejo Correpresor Histona Desacetilasa y Sin3 , Factor de Transcripción DP1 , Factores de Transcripción/química , Factores de Transcripción/genética
10.
Cell ; 104(3): 353-63, 2001 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-11239393

RESUMEN

Inherited mutations of the TFIIH helicase subunits xeroderma pigmentosum (XP) B or XPD yield overlapping DNA repair and transcription syndromes. The high risk of cancer in these patients is not fully explained by the repair defect. The transcription defect is subtle and has proven more difficult to evaluate. Here, XPB and XPD mutations are shown to block transcription activation by the FUSE Binding Protein (FBP), a regulator of c-myc expression, and repression by the FBP Interacting Repressor (FIR). Through TFIIH, FBP facilitates transcription until promoter escape, whereas after initiation, FIR uses TFIIH to delay promoter escape. Mutations in TFIIH that impair regulation by FBP and FIR affect proper regulation of c-myc expression and have implications in the development of malignancy.


Asunto(s)
Factores de Transcripción TFII , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xerodermia Pigmentosa/metabolismo , Western Blotting , Línea Celular , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Genes Dominantes , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Mutación , Neoplasias/metabolismo , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción TFIIH , Transcripción Genética , Transfección , Xerodermia Pigmentosa/genética
12.
Nature ; 407(6803): 471-5, 2000 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11028991

RESUMEN

The machinery that transcribes protein-coding genes in eukaryotic cells must contend with repressive chromatin structures in order to find its target DNA sequences. Diverse arrays of proteins modify the structure of chromatin at gene promoters to help transcriptional regulatory proteins access their DNA recognition sites. The way in which disruption of chromatin structure at a promoter is transmitted through a whole gene has not been defined. Recent breakthroughs suggest that the passage of an RNA polymerase through a gene is coupled to mechanisms that propagate the breakdown of chromatin.


Asunto(s)
Cromatina/metabolismo , ARN Polimerasa II/metabolismo , Acetilación , Animales , Predicción , Histonas/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
13.
Nature ; 407(6800): 102-6, 2000 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-10993082

RESUMEN

The mammalian cyclin-dependent kinase 8 (cdk8) gene has been linked with a subset of acute lymphoblastic leukaemias, and its corresponding protein has been functionally implicated in regulation of transcription. Mammalian cdk8 and cyclin C, and their respective yeast homologues, Srb10 and Srb11, are components of the RNA polymerase II holoenzyme complex where they function as a protein kinase that phosphorylates the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (ref. 7). The yeast SRB10 and SRB11 genes have been implicated in the negative regulation of transcription. The cdk8/cyclin C protein complex is also found in a number of mammalian Mediator-like protein complexes, which repress activated transcription independently of the CTD in vitro. Here we show that cdk8/cyclin C can regulate transcription by targeting the cdk7/cyclin H subunits of the general transcription initiation factor IIH (TFIIH). cdk8 phosphorylates mammalian cyclin H in the vicinity of its functionally unique amino-terminal and carboxy-terminal alpha-helical domains. This phosphorylation represses both the ability of TFIIH to activate transcription and its CTD kinase activity. In addition, mimicking cdk8 phosphorylation of cyclin H in vivo has a dominant-negative effect on cell growth. Our results link the Mediator complex and the basal transcription machinery by a regulatory pathway involving two cyclin-dependent kinases. This pathway appears to be unique to higher organisms.


Asunto(s)
Quinasas Ciclina-Dependientes , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción TFII , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Ciclina C , Ciclina H , Ciclinas/metabolismo , Sustancias Macromoleculares , Fosforilación , Proteínas Recombinantes/metabolismo , Factor de Transcripción TFIIH , Transcripción Genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
14.
Mol Cell ; 5(6): 1067-72, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10912001

RESUMEN

We report that the chromatin-specific transcription elongation factor FACT functions in conjunction with the RNA polymerase II CTD kinase P-TEFb to alleviate transcription inhibition by DSIF (DRB sensitivity-inducing factor) and NELF (negative elongation factor). We find that the kinase activity of TFIIH is dispensable for this activity, demonstrating that TFIIH-mediated CTD phosphorylation is not involved in the regulation of FACT and DSIF/NELF activities. Thus, we propose a novel transcriptional regulatory network in which DSIF/NELF inhibition of transcription is prevented by P-TEFb in cooperation with FACT. This study uncovers a novel role for FACT in the regulation of transcription on naked DNA that is independent of its activities on chromatin templates. In addition, this study reveals functional differences between P-TEFb and TFIIH in the regulation of transcription.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Proteínas del Grupo de Alta Movilidad , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras , Factores de Transcripción TFII , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional , Regulación de la Expresión Génica , Humanos , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/genética
15.
Science ; 288(5470): 1418-22, 2000 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-10827951

RESUMEN

We show that transcription factor IIH ERCC3 subunit, the DNA helicase responsible for adenosine triphosphate (ATP)-dependent promoter melting during transcription initiation, does not interact with the promoter region that undergoes melting but instead interacts with DNA downstream of this region. We show further that promoter melting does not change protein-DNA interactions upstream of the region that undergoes melting but does change interactions within and downstream of this region. Our results rule out the proposal that IIH functions in promoter melting through a conventional DNA-helicase mechanism. We propose that IIH functions as a molecular wrench: rotating downstream DNA relative to fixed upstream protein-DNA interactions, thereby generating torque on, and melting, the intervening DNA.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción TFII , Factores de Transcripción/metabolismo , Secuencia de Bases , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH , Transcripción Genética
16.
J Biol Chem ; 275(20): 14787-90, 2000 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-10747848

RESUMEN

We have previously reported the isolation and characterization of a nucleosome remodeling and spacing factor, RSF. One of the RSF subunits is hSNF2h, a SNF2 homologue. Here we set out to isolate and characterize other hSNF2h-containing complexes. We have identified a novel hSNF2h complex that facilitates ATP-dependent chromatin assembly with the histone chaperone NAP-1. The complex possesses ATPase activity that is DNA-dependent and nucleosome-stimulated. This complex is capable of facilitating ATP-dependent nucleosome remodeling and transcription initiation from chromatin templates. In addition to hSNF2h, this complex also contains a 190-kDa protein encoded by the BAZ1A gene. Since both subunits are homologues of the Drosophila ACF complex (ATP-utilizing chromatin assembly and remodeling factor), we have named this factor human ACF or hACF.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/fisiología , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/fisiología , Adenosina Trifosfato/metabolismo , Animales , Núcleo Celular/fisiología , Drosophila , Células HeLa , Humanos , Nucleosomas/ultraestructura , Moldes Genéticos , Transcripción Genética
17.
Mol Cell Biol ; 20(7): 2455-65, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10713169

RESUMEN

A transcriptional repressor complex encoded by two essential genes, YDR1 and BUR6, was isolated from Saccharomyces cerevisiae and shown to be the functional counterpart of the human repressor complex Dr1-DRAP1. To elucidate the mechanism of repression by this complex, altered forms of Ydr1 and Bur6 were studied in vitro and in vivo. Deletion of the C-terminal 41 amino acids of Ydr1 resulted in loss of repressor activity and a growth defect, suggesting that the C-terminal domain of Ydr1 functions as a potent transcriptional repressor. A screen for extragenic suppressors of a cold-sensitive ydr1 (ydr1(cs)) mutant led to the identification of recessive mutations in the SIN4 gene, which encodes a component of the SRB-MED complex. The sin4 alleles suppressed not only ydr1(cs) mutations but also bur6(cs) mutations. In contrast, deletion of the gal11 gene, whose product is also a member of the SRB-MED complex, failed to suppress ydr1(cs) and bur6(cs) mutations, indicating that suppression is not due to general defects in the SRB-MED complex. Moreover, one of the sin4 alleles, but not the sin4 deletion, was found to specifically suppress the inviability of a ydr1 deletion, demonstrating that the essential function of Ydr1 becomes dispensable in a sin4 mutant background. Biochemical analysis of the SRB-MED complex from the sin4 suppressor strain revealed a structurally distinct form of the SRB-MED complex that lacks a subset of mediator subunits. These results define a delicate balance between positive and negative regulators of transcription operating through the Ydr1-Bur6 repressor complex.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Fúngicas/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genotipo , Humanos , Complejo Mediador , Datos de Secuencia Molecular , Mutación , Fosfoproteínas , Alineación de Secuencia , Transactivadores/genética , Factores de Transcripción
19.
Nat Genet ; 23(1): 58-61, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10471499

RESUMEN

Mammalian DNA is methylated at many CpG dinucleotides. The biological consequences of methylation are mediated by a family of methyl-CpG binding proteins. The best characterized family member is MeCP2, a transcriptional repressor that recruits histone deacetylases. Our report concerns MBD2, which can bind methylated DNA in vivo and in vitro and has been reported to actively demethylate DNA (ref. 8). As DNA methylation causes gene silencing, the MBD2 demethylase is a candidate transcriptional activator. Using specific antibodies, however, we find here that MBD2 in HeLa cells is associated with histone deacetylase (HDAC) in the MeCP1 repressor complex. An affinity-purified HDAC1 corepressor complex also contains MBD2, suggesting that MeCP1 corresponds to a fraction of this complex. Exogenous MBD2 represses transcription in a transient assay, and repression can be relieved by the deacetylase inhibitor trichostatin A (TSA; ref. 12). In our hands, MBD2 does not demethylate DNA. Our data suggest that HeLa cells, which lack the known methylation-dependent repressor MeCP2, use an alternative pathway involving MBD2 to silence methylated genes.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Histona Desacetilasas/fisiología , Proteínas Represoras/fisiología , Transcripción Genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/metabolismo , Metilación de ADN , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Ácidos Hidroxámicos/farmacología , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Ratas , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Activación Transcripcional , Transfección
20.
Genes Dev ; 13(15): 1924-35, 1999 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10444591

RESUMEN

ATP-dependent nucleosome remodeling and core histone acetylation and deacetylation represent mechanisms to alter nucleosome structure. NuRD is a multisubunit complex containing nucleosome remodeling and histone deacetylase activities. The histone deacetylases HDAC1 and HDAC2 and the histone binding proteins RbAp48 and RbAp46 form a core complex shared between NuRD and Sin3-histone deacetylase complexes. The histone deacetylase activity of the core complex is severely compromised. A novel polypeptide highly related to the metastasis-associated protein 1, MTA2, and the methyl-CpG-binding domain-containing protein, MBD3, were found to be subunits of the NuRD complex. MTA2 modulates the enzymatic activity of the histone deacetylase core complex. MBD3 mediates the association of MTA2 with the core histone deacetylase complex. MBD3 does not directly bind methylated DNA but is highly related to MBD2, a polypeptide that binds to methylated DNA and has been reported to possess demethylase activity. MBD2 interacts with the NuRD complex and directs the complex to methylated DNA. NuRD may provide a means of gene silencing by DNA methylation.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Portadoras/metabolismo , ADN Helicasas , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Complejos Multienzimáticos/química , Nucleosomas/metabolismo , Proteínas Represoras , Secuencia de Aminoácidos , Autoantígenos/aislamiento & purificación , Autoantígenos/metabolismo , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Clonación Molecular , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Células HeLa , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Histona Desacetilasas/química , Histona Desacetilasas/genética , Histona Desacetilasas/aislamiento & purificación , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/aislamiento & purificación , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/genética , Unión Proteica , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteína 4 de Unión a Retinoblastoma , Proteína 7 de Unión a Retinoblastoma , Homología de Secuencia de Aminoácido , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...