Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Org Lett ; 26(18): 3982-3986, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38690829

RESUMEN

Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,ß-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.

2.
APMIS ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644557

RESUMEN

LncRNAs play an important role in autoimmune diseases. The purpose of this study was to explore the role of lncRNA SNHG1 in systemic lupus erythematosus (SLE), and laid a theoretical foundation for the study of SLE. The basic clinical information of all subjects was first collected for statistical analysis, and SNHG1 expression in the serum of all subjects was detected by RT-qPCR. The value of SNHG1 in the diagnosis of SLE was assessed by ROC. The correlation between SNHG1 and each blood sample index was analyzed by Pearson correlation analysis. The role of SNHG1 in primary peripheral blood mononuclear cells (PBMCs) apoptosis was explored. SNHG1 expression is relatively upregulated in patients with SLE compared to healthy people. SNHG1 expression was positively correlated with SLEDAI score, IgG, CRP, and ESR, and negatively correlated with C3 and C4. ROC indicated that SNHG1 has the potential to assist in the diagnosis of SLE. PBMCs apoptosis in SLE was higher than that in control group, the knockdown and overexpression of SNHG1 could correspondingly inhibit and promote PBMCs apoptosis. SNHG1 has the potential to be a diagnosis marker for SLE and may be involved in regulating PBMCs apoptosis.

3.
Lupus ; : 9612033241243175, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634475

RESUMEN

AIM: This study aimed to investigate the expression of H19 and its possible molecular mechanism in systemic lupus erythematosus (SLE). METHODS: The expression of H19 and miR-19b in serum and peripheral blood mononuclear cells (PBMCs) were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Receiver operator characteristic (ROC) curve was constructed to evaluate the diagnostic value of serum H19 in SLE. Pearson correlation coefficient was used to analyze the correlation between serum levels of H19 and miR-19b. Flow cytometry and Cell counting kit-8 (CCK-8) assay were performed to detect cell apoptosis and viability. The levels of pro-inflammatory and anti-inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA). Luciferase reporter gene assay was conducted to verify the interaction between H19 and miR-19b. RESULTS: The expression of H19 and miR-19b in SLE group were up-regulated and down-regulated, respectively. Serum H19 has certain clinical diagnostic value in SLE. In in vitro studies, overexpression of H19 can significantly inhibit the viability of PBMCs and promote apoptosis and inflammatory response of PBMCs by interacting with miR-19b. CONCLUSIONS: The expression of H19 is upregulated in patients with SLE and plays a role in cell function and inflammation by targeting miR-19b in PBMCs, which may be one of the pathological mechanisms of SLE.

4.
Poult Sci ; 103(7): 103776, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38688136

RESUMEN

Chicoric acid (CA) is a natural nutrient found in plants, showcasing diverse biological activities, including anti-inflammatory and antioxidant properties. Despite its valuable properties, CA faces limitations in bioavailability and susceptibility to oxidative breakdown during utilization. Previous research introduced synthesized dihydrocaffeic acid grafted chitosan self-assembled nanomicelles (DA-g-CS), demonstrating its potential to enhance CA absorption. This study aims to investigate the pharmacokinetics, tissue distribution, and antioxidant activity of both CA and DA-g-CS loaded CA (DA-g-CS/CA) in broilers. An IPEC-J2 cell model was established and evaluated to delve deeper into the transport mechanism and antioxidant potential. The in vivo pharmacokinetic analysis in broilers highlighted a substantial difference: the maximum plasma concentration (Cmax) of DA-g-CS/CA exceeded CA by 2.6-fold, yielding a notable increased relative bioavailability to 214%. This evidence underscores the significant enhancement in CA's oral absorption, facilitated by DA-g-CS. The collective evaluation outcomes affirm the successful development of the cell model, indicating its suitability for drug transporter experiments. The findings from the intestinal transit analysis revealed that both CA and DA-g-CS/CA underwent passive entry into IPEC-J2 cells. Notably, the cellular uptake rate of DA-g-CS loaded with CA was significantly amplified, reaching 2.1 times higher than that of CA alone. Intracellular transport mechanisms involved microtubules, lysosomes, and the endoplasmic reticulum, with an additional pathway involving the endoplasmic reticulum observed specifically for DA-g-CS/CA, distinguishing it from CA. Moreover, the results from both in vivo and in vitro antioxidant assessments highlight the potent antioxidant activity of DA-g-CS/CA, showcasing its efficacy in preventing and treating cellular damage induced by oxidative stress. In summary, these findings underscore the significant enhancement of CA's efficacy facilitated by DA-g-CS, establishing a robust theoretical foundation for the prospective application of CA within livestock and poultry farming.

5.
Nat Commun ; 15(1): 2713, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548728

RESUMEN

DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.


Asunto(s)
Metilación de ADN , Pueblos del Este de Asia , Humanos , Metilación de ADN/genética , Sitios de Carácter Cuantitativo/genética , Regulación de la Expresión Génica , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
6.
Appl Environ Microbiol ; 90(3): e0207923, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349148

RESUMEN

Anthocyanin cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis in Escherichia coli is a promising and efficient way toward large-scale production. The current production titer is low partly due to the accumulation of C3G inside the producing microbes; thus, it is important to explore native transporters responsible for anthocyanin secretion. Currently, there has been only one native E. coli transporter identified with C3G-transporting capability, and its overexpression has a very limited effect on the promotion of extracellular C3G production. In this study, we report the identification and verification of an efficient intrinsic C3G efflux transporter MdtH in E. coli through transcriptomic analysis and genetic/biochemical studies. MdtH could bind C3G with high affinity, and its overexpression increased the extracellular C3G biosynthesis in E. coli by 110%. Our study provides a new regulation target for microbial biosynthesis of C3G and other anthocyanins. IMPORTANCE: Cyanidin 3-O-glucoside (C3G) is a natural colorant with health-promoting activities and is, hence, widely used in food, cosmetic, and nutraceutical industries. Its market supply is currently dependent on extraction from plants. As an alternative, C3G can be produced by the microbe Escherichia coli in a green and sustainable way. However, a large portion of this compound is retained inside the cell of E. coli, thus complicating the purification process and limiting the high-level production. We have identified and verified an efficient native transporter named MdtH in E. coli that can export C3G to the cultivation medium. Overexpression of MdtH could improve extracellular C3G production by 110% without modifications of the metabolic pathway genes or enzymes. This study reveals a new regulation target for C3G production in bacteria and provides guidance to the microbial biosynthesis of related compounds.


Asunto(s)
Antocianinas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Glucósidos/metabolismo , Transporte Biológico
7.
Int J Genomics ; 2024: 2277956, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410787

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive genetic disease characterized by clinical symptoms such as eczema, thrombocytopenia with small platelets, immune deficiency, prone to autoimmune diseases, and malignant tumors. This disease is caused by mutations of the WAS gene encoding WASprotein (WASP). The locus and type of mutations of the WAS gene and the expression quantity of WASP were strongly correlated with the clinical manifestations of patients. We found a novel mutation in the WAS gene (c.931 + 5G > C), which affected splicing to produce three abnormal mRNA, resulting in an abnormally truncated WASP. This mutation led to a reduction but not the elimination of the normal WASP population, resulting in causes X-linked thrombocytopenia (XLT) with mild clinical manifestations. Our findings revealed the pathogenic mechanism of this mutation.

8.
Sleep Breath ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374476

RESUMEN

OBJECTIVE: To investigate the prevalence and associated factors of excessive daytime sleepiness (EDS) among rural-dwelling Chinese older adults. METHODS: We collected data on demographic, epidemiological, and clinical factors via in-person interviews and clinical examinations following a structured questionnaire. The 15-item Geriatric Depression Scale (GDS-15) was used to assess depressive symptoms, the Berlin questionnaire (BQ) to assess obstructive sleep apnea (OSA) risk; and the Epworth Sleepiness Scale (ESS) to assess sleep characteristics. EDS was defined as the total ESS score > 10. RESULTS: This population-based study engaged 4845 participants (age ≥ 65 years, 57.3% female) in the 2018 examination of the Multimodal Interventions to Delay Dementia and Disability in Rural China. The prevalence of EDS was 9.3% in the total sample, 8.3% in females, and 10.6% in males, and the prevalence decreased with advanced age. Logistic regression analysis revealed that EDS was significantly associated with age (multivariable-adjusted odds ratio [OR] = 0.97; 95% confidence interval [CI] 0.95-0.99), female sex (0.53; 0.36-0.77), hypertension (0.68; 0.54-0.85), depressive symptoms (2.68; 2.07-3.46), high OSA risk (2.11; 1.69-2.63), and poor sleep quality (2.12; 1.60-2.82). CONCLUSION: EDS affects nearly one-tenth of rural older adults in China. Older age, female sex, and hypertension were associated with a decreased likelihood of EDS, while depressive symptoms, high OSA risk, and poor sleep quality were correlated with an elevated likelihood of EDS.

9.
Heliyon ; 10(3): e25791, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356534

RESUMEN

Introduction: Acute-on-chronic liver failure (ACLF) is a clinical syndrome with high short-term mortality. ACLF has been increasingly studied in recent years; however, a bibliometric analysis of the entire ACLF field has not been conducted. This study assesses current global trends and hotspots in ACLF research. Materials and methods: The core Web of Science database was searched for all ACLF-related publications conducted during 2012-2022. The data included information on the author, country, author keywords, publication year, citation frequency, and references. Microsoft Excel was used to collate the data and calculate percentages. VOSviewer software was used for citation and density visualization analysis. Histogram rendering was performed using GraphPad Prism Version 8.0 and R software was used to supplement the analysis. Result: A total of 1609 ACLF-related articles from 67 different countries were identified. China contributed the most literature, followed by the United States. However, Chinese literature only had the 4th highest number of citations, indicating that cooperation with other countries needs to be strengthened. The Journal of Hepatology had the highest number of ACLF-related citations. Prognosis was one of the most common author keywords, which may highlight current research hotspots. Bacterial infection was a common keyword and was closely related to prognosis. Conclusion: This bibliometric analysis suggests that future research hotspots will focus on the interplay among bacterial infection, organ failure, and prognosis.

10.
Asia Pac J Ophthalmol (Phila) ; 13(1): 100030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38233300

RESUMEN

PURPOSE: There are major gaps in our knowledge of hereditary ocular conditions in the Asia-Pacific population, which comprises approximately 60% of the world's population. Therefore, a concerted regional effort is urgently needed to close this critical knowledge gap and apply precision medicine technology to improve the quality of lives of these patients in the Asia-Pacific region. DESIGN: Multi-national, multi-center collaborative network. METHODS: The Research Standing Committee of the Asia-Pacific Academy of Ophthalmology and the Asia-Pacific Society of Eye Genetics fostered this research collaboration, which brings together renowned institutions and experts for inherited eye diseases in the Asia-Pacific region. The immediate priority of the network will be inherited retinal diseases (IRDs), where there is a lack of detailed characterization of these conditions and in the number of established registries. RESULTS: The network comprises 55 members from 35 centers, spanning 12 countries and regions, including Australia, China, India, Indonesia, Japan, South Korea, Malaysia, Nepal, Philippines, Singapore, Taiwan, and Thailand. The steering committee comprises ophthalmologists with experience in consortia for eye diseases in the Asia-Pacific region, leading ophthalmologists and vision scientists in the field of IRDs internationally, and ophthalmic geneticists. CONCLUSIONS: The Asia Pacific Inherited Eye Disease (APIED) network aims to (1) improve genotyping capabilities and expertise to increase early and accurate genetic diagnosis of IRDs, (2) harmonise deep phenotyping practices and utilization of ontological terms, and (3) establish high-quality, multi-user, federated disease registries that will facilitate patient care, genetic counseling, and research of IRDs regionally and internationally.


Asunto(s)
Países en Desarrollo , Humanos , Filipinas , China , Tailandia , Malasia
11.
Recent Pat Anticancer Drug Discov ; 19(2): 199-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214359

RESUMEN

BACKGROUND: As a pentacyclic triterpenoid, OA (oleanolic acid) has exhibited antiinflammatory, immunomodulatory and antitumor effects. VEGFR-2 (vascular endothelial cells receptor-2) tyrosine kinase activity could be inhibited by apatinib, a small-molecule antiangiogenic agent. OBJECTIVE: Thus, this study sought to investigate the mechanism underlying the synergistic antitumor activity of combined OA and apatinib patent. METHODS: Through CCK8 (Cell counting kit 8 assay), flow cytometric and western blotting techniques, we conducted in vitro studies on apatinib and OA effects on cell proliferation and apoptosis in H22 cell line. H22 tumor-burdened mice model was established in vivo, while the related signaling pathways were studied via pathological examination, western blotting and qPCR (quantitative polymerase chain reaction). RESULTS: Growth of H22 cells in vitro and in vivo could be inhibited effectively by apatinib and OA. Thus, OA repaired liver function and inhibited oxidative stress induced by apatinib. CONCLUSION: OA can treat apatinib induced liver injury in H22 Tumor-burdened mice by enhancing the suppresssive effect of apatinib on the growth of tumor.


Asunto(s)
Neoplasias Hepáticas , Ácido Oleanólico , Piridinas , Humanos , Animales , Ratones , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Línea Celular Tumoral , Células Endoteliales/metabolismo , Células Endoteliales/patología , Patentes como Asunto , Proliferación Celular , Neoplasias Hepáticas/patología
12.
J Psychiatr Res ; 170: 394-407, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218013

RESUMEN

BACKGROUND: Problematic use of mobile phones (PMPU) has been described as a serious public health issue. METHODS: This study was a parallel three-arm randomized controlled trial and has completed registration (ClinicalTrials.gov Identifier: NCT05843591). Ninety college students with PMPU were randomly assigned to the aerobic exercise group (AE group, n = 30), the Tai Chi Chuan group (TCC group, n = 30), or the wait-list control group (WLC group, n = 30). At the end of the intervention, stool samples from the study participants were collected for biological analysis based on 16 S rDNA amplicon sequencing technology. The primary outcome was addiction symptoms assessed by the Smartphone Addiction Scale-Short Version (SAS-SV). The secondary outcomes are emotional symptoms, physical symptoms, and flora species. RESULTS: Compared with the WLC group, the AE and TCC groups showed reductions in PMPU levels, physical and mental fatigue, but there was no difference between the two groups. Moreover, the effect of increasing self-esteem embodied in the TCC group was not present in the AE group. Compared to the WLC group, the relative abundance of Bacteroidaceae and Bacteroides were lower in the AE group, while the relative abundance of Erysipelotrichaceae and Alistipes were lower in the TCC group. And the relative abundance of Bacteroidaceae, Bacteroides, and Alistipes were significantly and negatively correlated with the decline in PMPU scores. CONCLUSION: AE or TCC is an effective, safe and efficient intervention for college students with PMPU, providing some physiological and psychological benefits and having some impact on their intestinal flora.


Asunto(s)
Uso del Teléfono Celular , Microbioma Gastrointestinal , Taichi Chuan , Humanos , Ejercicio Físico , Estudiantes/psicología
13.
Gene ; 896: 148038, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036077

RESUMEN

BACKGROUND: Hemophilia A is caused by a deficiency of coagulation factor VIII in the body due to a defect in the F8 gene. The emergence of CRISPR/Cas9 gene editing technology will make it possible to alter the expression of the F8 gene in hemophiliacs, while achieving a potential cure for the disease. METHODS: Initially, we identified high-activity variants of FVIII and constructed donor plasmids using enzymatic digestion and ligation techniques. Subsequently, the donor plasmids were co-transfected with sgRNA-Cas9 protein into mouse Neuro-2a cells, followed by flow cytometry-based cell sorting and puromycin selection. Finally, BDD-hF8 targeted to knock-in the mROSA26 genomic locus was identified and validated for FVIII expression. RESULTS: We identified the p18T-BDD-F8-V3 variant with high FVIII activity and detected the strongest pX458-mROSA26-int1-sgRNA1 targeted cleavage ability and no cleavage events were found at potential off-target sites. Targeted knock-in of BDD-hF8 cDNA at the mROSA26 locus was achieved based on both HDR/NHEJ gene repair approaches, and high level and stable FVIII expression was obtained, successfully realizing gene editing in vitro. CONCLUSIONS: Knock-in of exogenous genes based on the CRISPR/Cas9 system targeting genomic loci is promising for the research and treatment of a variety of single-gene diseases.


Asunto(s)
Sistemas CRISPR-Cas , Factor VIII , Hemofilia A , Animales , Ratones , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Hemofilia A/genética , Hemofilia A/terapia , ARN Guía de Sistemas CRISPR-Cas , Factor VIII/biosíntesis , Factor VIII/genética
14.
J Ethnopharmacol ; 321: 117462, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981117

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the ancient book "Shen Nong's Herbal Classic," Panax ginseng CA Mey was believed to have multiple benefits, including calming nerves, improving cognitive function, and promoting longevity. Ginsenosides are the main active ingredients of ginseng. Ginsenoside RK3 (RK3), a rare ginsenoside extracted from ginseng, displays strong pharmacological potential. However, its effect on neurogenesis remains insufficiently investigated. AIM OF THE STUDY: This study aims to investigate whether RK3 improves learning and memory by promoting neurogenesis, and to explore the mechanism of RK3 action. MATERIALS AND METHODS: The therapeutic effect of RK3 on learning and memory was determined by the Morris water maze (MWM) and novel object recognition test (NORT). The pathogenesis and protective effect of RK3 on primary neurons and animal models were detected by immunofluorescence and western blotting. Protein expression of cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway was detected by western blotting. RESULTS: Our results showed that RK3 treatment significantly improved cognitive function in APPswe/PSEN1dE9 (APP/PS1) mice and C57BL/6 (C57) mice. RK3 promotes neurogenesis and synaptogenesis in the mouse hippocampus. In vitro, RK3 prevents Aß-induced injury in primary cultured neurons and promotes the proliferation of PC12 as well as the expression of synapse-associated proteins. Mechanically, the positve role of RK3 on neurogenesis was combined with the activation of CREB/BDNF pathway. Inhibition of CREB/BDNF pathway attenuated the effect of RK3. CONCLUSION: In conclusion, this study demonstrated that RK3 promotes learning and cognition in APP/PS1 and C57 mice by promoting neurogenesis and synaptogenesis through the CREB/BDNF signaling pathway. Therefore, RK3 is expected to be further developed into a potential drug candidate for the treatment of Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Ginsenósidos , Ratones , Animales , Enfermedad de Alzheimer/patología , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Ginsenósidos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Endogámicos C57BL , Neurogénesis , Modelos Animales de Enfermedad , Hipocampo
15.
Patient Prefer Adherence ; 17: 3195-3204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090331

RESUMEN

Background: Advanced colorectal adenomas are at a risk of malignant transformation following endoscopic resection, and colonoscopic monitoring interval after polypectomy have been widely used. This study aims to investigate the prevailing state of compliance with postoperative colonoscopic surveillance among patients with advanced colorectal adenomas and its' influencing factors at Affiliated Hospital of Jiangnan University between November 2020 and April 2021. Methods: A retrospective analysis was conducted on patients who underwent endoscopic treatment for ACA at Affiliated Hospital of Jiangnan University from November 2020 to April 2021. Compliance with postoperative colonoscopic surveillance was assessed based on established guidelines. Factors such as sociodemographic features, medical histories, and health beliefs were analyzed to determine their influence on compliance. Univariate analysis, survival analysis, and multi-factor Cox regression analysis were used for statistical evaluation. Results: A total of 511 patients were included in the study. The compliance rate was found to be 43.2%. The univariate analysis indicated that factors such as gender, education level, work status, type of health insurance, place of residence, marital status, type of consultation, presence of gastrointestinal symptoms, number of polyps, and the maximum diameter of polyps significantly affected compliance. Multi-factor Cox regression analysis revealed that female gender, absence of gastrointestinal symptoms, outpatient endoscopic treatment, and solitary polyps were independent factors influencing compliance. Reasons for poor compliance included underestimating the severity of the disease, fear of colonoscopy, and procedural complexities. Conclusion: Patients with advanced colorectal adenomas had poor compliance with postoperative colonoscopy monitoring. Tailored health education programs should be designed, targeting women, outpatients undergoing endoscopic procedures, and patients with solitary polyps to enhance their compliance with colonoscopy monitoring.

16.
Sci Rep ; 13(1): 17385, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833363

RESUMEN

To investigate the potential mechanism of Er-Xian decoction (EXD) in treating aplastic anemia (AA), the active components of EXD were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the targets of the components were predicted by the Swiss Target Prediction database. AA targets were collected from the GeneCards, OMIM, DisGeNET, PharmGKB, DrugBank, and TTD databases, the intersection of AA targets and EXD targets was calculated, and an herb-component-target network was constructed by Cytoscape 3.7.2 software. The STRING database was used for protein‒protein interaction (PPI) analysis, and Cytoscape 3.7.2 software was used to construct a PPI network and perform topology analysis. The core targets were imported into the DAVID database for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The molecular docking software AutoDock was used to measure the affinity between active components and key targets. Finally, we established a mouse model of AA and verified the key targets and signaling pathways of EXD by RT‒PCR, ELISA and Western blot analysis. A total of 53 active components were screened from EXD, 2516 AA-related targets were collected, and 195 common targets were obtained. An herb-component-target network and a PPI network were successfully constructed, and 36 core targets were selected from the PPI network. The main active components of EXD include luteolin, kaempferol, berberine, etc., and key targets include PIK3CA, AKT1, STAT3, etc. GO functional enrichment analysis showed that cell components, molecular functions and biological processes with significant correlations were macromolecular complexes, protein serine/threonine/tyrosine kinase activity and protein phosphorylation, respectively. KEGG pathway analysis showed that the pathways with significant correlations included the PI3K-Akt signaling pathway and JAK-STAT signaling pathway. Molecular docking results showed that the tested key targets had good affinity for the corresponding active components. In AA mice, we found that EXD significantly increased white blood cell count, red blood cell count, platelet count and hemoglobin levels, increased mRNA levels of PIK3CA, PIK3CD, AKT1, JAK2, STAT3 and MAPK1, and promoted phosphorylation of PI3K, AKT, ERK1/2 and STAT3. In summary, EXD acts on PI3K, AKT, STAT3 and other targets through berberine, luteolin, quercetin and other components to regulate the PI3K-Akt pathway, JAK-STAT pathway and other pathways, thus exerting its therapeutic effect on AA. This study explained the Chinese medicine theory of treating AA with EXD by tonifying kidney-yang and provides a scientific basis for the use of EXD in treating AA.


Asunto(s)
Anemia Aplásica , Berberina , Medicamentos Herbarios Chinos , Animales , Ratones , Anemia Aplásica/tratamiento farmacológico , Farmacología en Red , Quinasas Janus , Luteolina/farmacología , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción STAT , Transducción de Señal , Fosfatidilinositol 3-Quinasa Clase I , Medicamentos Herbarios Chinos/farmacología
17.
IET Syst Biol ; 17(6): 336-351, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814484

RESUMEN

The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Biología Computacional , Redes Neurales de la Computación
18.
J Fungi (Basel) ; 9(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37888283

RESUMEN

Pichia pastoris is the most widely used microorganism for the production of secreted industrial proteins and therapeutic proteins. Recently, this yeast has been repurposed as a cell factory for the production of chemicals and natural products. In this review, the general physiological properties of P. pastoris are summarized and the readily available genetic tools and elements are described, including strains, expression vectors, promoters, gene editing technology mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, and adaptive laboratory evolution. Moreover, the recent achievements in P. pastoris-based biosynthesis of proteins, natural products, and other compounds are highlighted. The existing issues and possible solutions are also discussed for the construction of efficient P. pastoris cell factories.

19.
Heliyon ; 9(9): e20146, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809982

RESUMEN

Inherited retinal dystrophies (IRDs) are a heterogeneous group of visual disorders caused by different pathogenic mutations in genes and regulatory sequences. The endoplasmic reticulum (ER) membrane protein complex (EMC) subunit 3 (EMC3) is the core unit of the EMC insertase that integrates the transmembrane peptides into lipid bilayers, and the function of its cytoplasmic carboxyl terminus remains to be elucidated. In this study, an insertional mutation c.768insT in the C-terminal coding region of EMC3 was identified and associated with dominant IRDs in a five-generation family. This mutation caused a frameshift in the coding sequence and a gain of an additional 16 amino acid residues (p.L256F-fs-ext21) to form a helix structure in the C-terminus of the EMC3 protein. The mutation is heterozygous with an incomplete penetrance, and cosegregates in all patients examined. This finding indicates that the C-terminus of EMC3 is essential for EMC functions and that EMC3 may be a novel candidate gene for retinal degenerative diseases.

20.
Front Endocrinol (Lausanne) ; 14: 1256877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854197

RESUMEN

Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.


Asunto(s)
Hipotiroidismo , Enfermedades del Sistema Nervioso , Animales , Humanos , Hormonas Tiroideas/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Hipotiroidismo/genética , Roedores/metabolismo , Mamíferos/metabolismo , Neuronas GABAérgicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...