Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Phys Condens Matter ; 36(18)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38241749

RESUMEN

We report on (resonant) x-ray diffraction experiments on the normal state properties of kagome-lattice superconductors KV3Sb5and RbV3Sb5. We have confirmed previous reports indicating that the charge density wave (CDW) phase is characterized by a doubling of the unit cell in all three crystallographic directions. By monitoring the temperature dependence of Bragg peaks associated with the CDW phase, we ascertained that it develops gradually over several degrees, as opposed to CsV3Sb5, where the CDW peak intensity saturates promptly just below the CDW transition temperature. Analysis of symmetry modes indicates that this behavior arises due to lattice distortions linked to the formation of CDWs. These distortions occur abruptly in CsV3Sb5, while they progress more gradually in RbV3Sb5and KV3Sb5. In contrast, the amplitude of the mode leading to the crystallographic symmetry breaking fromP6/mmmtoFmmmappears to develop more gradually in CsV3Sb5as well. Diffraction measurements close to the V K edge and the Sb L1edge show no sensitivity to inversion- or time-symmetry breaking, which are claimed to be associated with the onset of the CDW phase. The azimuthal angle dependence of the resonant diffraction intensity observed at the Sb L1edge is associated with the difference in the population of unoccupied states and the anisotropy of the electron density of certain Sb ions.

3.
Nat Commun ; 14(1): 4918, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582804

RESUMEN

Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4 (LAFO) films on MgGa2O4 (MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.

4.
Nat Commun ; 14(1): 2393, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100786

RESUMEN

We present room-temperature measurements of magnon spin diffusion in epitaxial ferrimagnetic insulator MgAl0.5Fe1.5O4 (MAFO) thin films near zero applied magnetic field where the sample forms a multi-domain state. Due to a weak uniaxial magnetic anisotropy, the domains are separated primarily by 180° domain walls. We find, surprisingly, that the presence of the domain walls has very little effect on the spin diffusion - nonlocal spin transport signals in the multi-domain state retain at least 95% of the maximum signal strength measured for the spatially-uniform magnetic state, over distances at least five times the typical domain size. This result is in conflict with simple models of interactions between magnons and static domain walls, which predict that the spin polarization carried by the magnons reverses upon passage through a 180° domain wall.

5.
Phys Rev Lett ; 128(12): 126802, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35394317

RESUMEN

Magnetic insulator-topological insulator heterostructures have been studied in search of chiral edge states via proximity induced magnetism in the topological insulator, but these states have been elusive. We identified MgAl_{0.5}Fe_{1.5}O_{4}/Bi_{2}Se_{3} bilayers for a possible magnetic proximity effect. Electrical transport and polarized neutron reflectometry suggest a proximity effect, but structural data indicate a disordered interface as the origin of the magnetic response. Our results provide a strategy via correlation of microstructure with magnetic data to confirm a magnetic proximity effect.

6.
Nano Lett ; 22(3): 1167-1173, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35077185

RESUMEN

Magnon-mediated spin flow in magnetically ordered insulators enables long-distance spin-based information transport with low dissipation. In the materials studied to date, no anisotropy has been observed in the magnon propagation length as a function of propagation direction. Here, we report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite MgAl0.5Fe1.5O4 (MAFO), which has a substantial in-plane 4-fold magnetic anisotropy. We observe spin diffusion lengths > 0.8 µm at room temperature in 6 nm films, with spin diffusion lengths 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results. These findings provide an approach for controlling magnon transport via strain, which opens new opportunities for designing magnonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...