Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Microorganisms ; 12(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38930420

RESUMEN

The research on bioplastics (both biobased and biodegradable) is steadily growing and discovering environmentally friendly substitutes for conventional plastic. This review highlights the significance of bioplastics, analyzing, for the first time, the state of the art concerning the use of agri-food waste as an alternative substrate for biopolymer generation using Haloferax mediterranei. H. mediterranei is a highly researched strain able to produce polyhydroxybutyrate (PHB) since it can grow and produce bioplastic in high-salinity environments without requiring sterilization. Extensive research has been conducted on the genes and pathways responsible for PHB production using H. mediterranei to find out how fermentation parameters can be regulated to enhance cell growth and increase PHB accumulation. This review focuses on the current advancements in utilizing food waste as a substitute for costly substrates to reduce feedstock expenses. Specifically, it examines the production of biomass and the recovery of PHB from agri-food waste. Furthermore, it emphasizes the characterization of PHB and the significance of hydroxyvalerate (HV) abundance in the formation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer. The downstream processing options are described, and the crucial factors associated with industrial scale-up are assessed, including substrates, bioreactors, process parameters, and bioplastic extraction and purification. Additionally, the economic implications of various options are discussed.

2.
Int J Food Microbiol ; 421: 110805, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38917489

RESUMEN

Due to a large adaptability to different cultivation conditions and limited input compared to other cereals, sorghum is considered an emerging crop. Its antioxidant properties, high fiber content and low glycemic index also make it a valuable addition to a healthy diet, nevertheless, the presence of antinutritional factors and the lack of gluten, hamper its use as food ingredient. This study investigated the impact of sourdough fermentation on sorghum nutritional quality. Lactic acid bacteria dominating sorghum flour and sourdough were identified by culture-dependent analysis revealing Lactiplantibacillus plantarum as the dominant species found in the mature sourdough, whereas Weissella cibaria and Weissella paramesenteroides were the species isolated the most after the first refreshment. Among yeasts, Saccharomyces cerevisiae was the most prevalent. Lactic acid bacteria pro-technological and functional performances as starter were evaluated in sorghum type-II sourdoughs through an integrated characterization combining chromatographic and NMR spectroscopic techniques. The metabolic profile of the strains mainly grouped together W. cibaria strains and W. paramesenteroides AI7 which distinguished for the intense proteolysis but also for the presence of compounds particularly interesting from a physiological perspective (allantoin, glutathione, γ-aminobutyric acid and 2-hydroxy-3-methylbutyric acid), whose concentration increased during fermentation in a species or strain specific matter.

3.
Foods ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928894

RESUMEN

Its high dietary fiber and protein contents and nutritional quality make defatted wheat germ (DWG) a valuable cereal by-product, yet its negative impact on food structure limits its use as a food ingredient. In this research, DWG underwent air classification, which identified two fractions with high fiber (HF) and low fiber/high protein (LF) contents, and a bioprocessing protocol, involving treatment with xylanase and fermentation with selected lactic acid bacterial strains. The degree of proteolysis was evaluated through electrophoretic and chromatographic techniques, revealing differences among fractions and bioprocessing options. Fermentation led to a significant increase in free amino acids (up to 6 g/kg), further enhanced by the combination with xylanase. When HF was used as an ingredient in bread making, the fiber content of the resulting bread exceeded 3.6 g/100 g, thus reaching the threshold required to make a "source of fiber" claim according to Regulation EC No.1924/2006. Meanwhile, all breads could be labeled a "source of protein" since up to 13% of the energy was provided by proteins. Overall, bioprocessed ingredients lowered the glycemic index (84 vs. 89) and increased protein digestibility (80 vs. 63%) compared to control breads. Technological and sensory analysis showed that the enzymatic treatment combined with fermentation also conferred a darker and more pleasant color to the bread crust, as well as better crumb porosity and elasticity.

4.
Curr Res Food Sci ; 8: 100697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487179

RESUMEN

Sourdough technology has been known for its role in the improvement of texture, flavor, and quality of mainly wheat and rye-based breads for decades. However, little is reported about its use in the improvement of whole-grain oat bread, especially concerning flavor formation, which is one major consumer drivers. This study investigated the effects of sourdough obtained by different lactic acid bacteria and yeast starters consortia on the texture and flavor of 100% oat bread. Four different consortia were selected to obtain four oat sourdoughs, which were analyzed to assess the main features due to the different starter fermentation metabolism. Sourdoughs were added to breads as 30% dough weight. Bread quality was technologically monitored via hardness and volume measurements. Sourdough breads were softer and had higher specific volume. The sensory profile of sourdoughs and breads was assessed by a trained panel in sensory laboratory conditions, and the volatile profile was analyzed by HS-SPME-GC-MS. Sourdoughs were rated with higher intensities than untreated control for most of attributes, especially concerning sour aroma and flavor attributes. Sourdough breads were rated with higher intensities than control bread for sour vinegar flavor and total odor intensity, in addition they had richer volatile profile. Our results confirmed that sourdough addition can lead to an enhanced flavor, moreover, it demonstrated that the use of different consortia of lactic acid bacteria and yeast strains leads to the improvement of texture and altered sensory profile of whole-oat bread.

6.
Foods ; 13(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201180

RESUMEN

The World Health Organization [...].

8.
Antioxidants (Basel) ; 12(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37627516

RESUMEN

Despite its appealing composition, because it is rich in fibers and polyphenols, grape pomace, the major by-product of the wine industry, is still discarded or used for feed. This study aimed at exploiting grape pomace functional potential through fermentation with lactic acid bacteria (LAB). A systematic approach, including the progressively optimization of the grape pomace substrate, was used, evaluating pomace percentage, pH, and supplementation of nitrogen and carbon sources. When grape pomace was used at 10%, especially without pH correction, LAB cell viability decreased up to 2 log cycles. Hence, the percentage was lowered to 5 or 2.5% and supplementations with carbon and nitrogen sources, which are crucial for LAB metabolism, were considered aiming at obtaining a proper fermentation of the substrate. The optimization of the substrate enabled the comparison of strains performances and allowed the selection of the best performing strain (Lactiplantibacillus plantarum T0A10). A sourdough, containing 5% of grape pomace and fermented with the selected strain, showed high antioxidant activity on DPPH and ABTS radicals and anti-inflammatory potential on Caco2 cells. The anthocyanins profile of the grape pomace sourdough was also characterized, showing qualitative and quantitative differences before and after fermentation. Overall, the grape pomace sourdough showed promising applications as a functional ingredient in bread making.

9.
Nutrients ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447283

RESUMEN

Baked goods manufacturing parameters and fermentation conditions interfere with the nutrients content and affect their gastrointestinal fate. Pinsa Romana is a type of pizza that, recently, has been commercially rediscovered and that needed elucidation from a nutritional and digestibility perspective. In this study, six types of Pinsa Romana (five made with indirect method and one produced with straight dough technology) were characterized for their biochemical and nutritional features. Several variables like indirect (biga) Pinsa Romana production process, fermentation time and use of sourdough were investigated. The Pinsa Romana made with biga including sourdough and fermented for 48 h at 16 °C ((PR_48(SD)) resulted in the lowest predicted glycemic index, in the highest content of total peptides, total and individual free amino acids and gamma-amino butyric acid (GABA), and in the best protein quality indexes (protein efficiency ratio and nutritional index). The static in vitro digestion showed that the digesta from PR_48(SD) confirmed a reduced in vitro glycemic response after intake, and it showed a lower bioavailability of hydrophilic peptides. Furthermore, the inclusion of sourdough in biga enhanced the bioavailability of protein-related end-products including human health promoting compounds such as essential amino acids.


Asunto(s)
Pan , Harina , Humanos , Fermentación , Pan/análisis , Harina/análisis , Índice Glucémico , Grano Comestible/química
10.
Int J Food Microbiol ; 404: 110322, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37454506

RESUMEN

The nutritional quality of gluten-free (GF) products is usually improved by using flours derived from alternative grains (e.g., pseudocereals and legumes), additives and hydrolysates, leading to long ingredient lists in the labels, that conflict with current customer expectations. In this work, chestnut, carob, and hemp flours were used as mixed ingredients for making a gluten-free type-II sourdough. Three exopolysaccharides-producer lactic acid bacteria, belonging to Leuconostoc mesenteroides, Weissella cibaria, and Leuconostoc pseudomesenteroides, were used, and the fermentation processes (6 log10 cfu/g, 25 °C, 16 h) optimize to maximize the EPS synthesis (15.70 ± 2.1 mg/kg). The chestnut-hemp (70:30) type-II sourdough was included in a rice/corn gluten-free bread recipe also containing psyllium flour as structuring agent. Although the fortification with unfermented flours already led the achievement of 6 g/100 g of fiber (high fiber, Regulation EC n. 1924/2006) and content of magnesium higher than the daily reference intakes, the use of type-II sourdoughs led to a further structural, sensory, and nutritional improvements (e.g., decreasing the main anti-nutritional factor phytic acid). This work demonstrated that the use of ad-hoc selected ingredients and optimized protocol can be used to produce a GF and "clean label" bread with optimal nutritional features and appreciable sensory and structural properties.


Asunto(s)
Cannabis , Pan/microbiología , Fermentación , Dieta Sin Gluten , Valor Nutritivo , Harina/microbiología
11.
Microorganisms ; 11(6)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37375109

RESUMEN

Carob, an underutilized crop with several ecological and economic advantages, was traditionally used as animal feed and excluded from the human diet. Yet, nowadays, its beneficial effects on health are making it an interesting candidate as a food ingredient. In this study, a carob-based yogurt-like product was designed and fermented with six lactic acid bacteria strains, whose performances after fermentation and during shelf life were assessed through microbial and biochemical characterization. The strains showed different aptitudes to ferment the rice-carob matrix. Particularly, Lactiplantibacillus plantarum T6B10 was among the strains with the lowest latency phase and highest acidification at the end of fermentation. T6B10 also showed discrete proteolysis during storage, so free amino acids were up to 3-fold higher compared to the beverages fermented with the other strains. Overall, fermentation resulted in the inhibition of spoilage microorganisms, while an increase in yeasts was found in the chemically acidified control. The yogurt-like product was characterized by high-fiber and low-fat content; moreover, compared to the control, fermentation decreased the predicted glycemic index (-9%) and improved the sensory acceptability. Thus, this work demonstrated that the combination of carob flour and fermentation with selected lactic acid bacteria strains represents a sustainable and effective option to obtain safe and nutritious yogurt-like products.

12.
Foods ; 12(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36900500

RESUMEN

Microalgae are aquatic unicellular microorganisms and, although various species are approved for human consumption, Arthrospira and Chlorella are the most widespread. Several nutritional and functional properties have been bestowed to microalgae principal micro- and macro-nutrients, with antioxidant, immunomodulatory and anticancer being the most common. The many references to their potential as a food of the future is mainly ascribed to the high protein and essential amino acid content, but they are also a source of pigments, lipids, sterols, polysaccharides, vitamins, and phenolic compounds with positive effects on human health. Nevertheless, microalgae use is often hindered by unpleasant color and flavor and several strategies have been sought to minimize such challenges. This review provides an overview of the strategies so far proposed and the main nutritional and functional characteristic of microalgae and the foods made thereof. Processing treatments have been used to enrich microalgae-derived substrates in compounds with antioxidant, antimicrobial, and anti-hypertensive properties. Extraction, microencapsulation, enzymatic treatments, and fermentation are the most common, each with their own pros and cons. Yet, for microalgae to be the food of the future, more effort should be put into finding the right pre-treatments that can allow the use of the whole biomass and be cost-effective while bringing about features that go beyond the mere increase of proteins.

13.
Microbiol Spectr ; : e0304722, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847557

RESUMEN

Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.

14.
Foods ; 12(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36766014

RESUMEN

Plant-based milk alternatives have gained massive popularity among consumers because of their sustainable production compared to bovine milk and because of meeting the nutritional requests of consumers affected by cow milk allergies and lactose intolerance. In this work, hemp flour, in a blend with rice flour, was used to design a novel lactose- and gluten-free yogurt-like (YL) product with suitable nutritional, functional, and sensory features. The growth and the acidification of three different lactic acid bacteria strains were monitored to better set up the biotechnological protocol for making the YL product. Hemp flour conferred the high fiber (circa 2.6 g/100 g), protein (circa 4 g/100 g), and mineral contents of the YL product, while fermentation by selected lactic acid bacteria increased the antioxidant properties (+8%) and the soluble fiber (+0.3 g/100 g), decreasing the predicted glycemic index (-10%). As demonstrated by the sensory analysis, the biotechnological process decreased the earthy flavor (typical of raw hemp flour) and increased the acidic and creamy sensory perceptions. Supplementation with natural clean-label vanilla powder and agave syrup was proposed to further decrease the astringent and bitter flavors. The evaluation of the starter survival and biochemical properties of the product under refrigerated conditions suggests an estimated shelf-life of 30 days. This work demonstrated that hemp flour might be used as a nutritional improver, while fermentation with a selected starter represents a sustainable and effective option for exploiting its potential.

15.
Front Microbiol ; 14: 1289937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169702

RESUMEN

Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.

16.
Foods ; 11(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36359959

RESUMEN

In this study, the effect of selected Lactobacillus acidophilus ATCC 4356, Limosilactobacillus fermentum DSM 20052, and Lacticaseibacillus paracasei subsp. paracasei DSM 20312 strains on the sensory characteristics, and protein and amino acid content of fermented water extracts derived from lupin, pea, and bean grains is reported. Even though all strains were able to grow over 7 log cfu mL-1 and to decrease pH in the range of -0.52 to -1.25 within 24 h, the release of an unpleasant ferric-sulfurous off-odor from the fermented bean water extract prohibited further characterization. Lupin and pea grain-based beverages underwent an in-depth sensory evaluation using a simplified check-all-that-apply (CATA) method, finding new and appreciable sensory notes such as cooked ham, almonds, and sandalwood. Fermented lupin water extract showed higher total protein content (on average, 0.93 mg mL-1) in comparison to that of pea grains (on average, 0.08 mg mL-1), and a free amino acid content (on average, 3.9 mg mL-1) close to that of cow milk. The concentrations of these nutrients decreased during refrigerated storage, when the lactic acid bacteria load was always higher than 7 log cfu mL-1. The results of this study indicated that lactic fermentation improves the sensory characteristics of these innovative legume-based beverages, which sustained high loads of viable lactobacilli up to the end of cold storage.

17.
Front Microbiol ; 13: 1000962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212839

RESUMEN

The use of the halophile microorganism Haloferax mediterranei, able to synthesize poly(hydroxybutyrate-hydroxyvalerate) (PHBV), is considered as a promising tool for the industrial production of bioplastic through bioprocessing. A consistent supplementation of the growth substrate in carbohydrates and minerals is overall necessary to allow its PHBV production. In this work, wasted bread was used as substrate for bioplastic production by microbial fermentation. Instead of the consistent and expensive minerals supplement required for Hfx. mediterranei DSM1411 growth, microfiltered seawater was added to the wasted bread-derived substrate. The suitable ratio of wasted bread homogenate and seawater, corresponding to 40:60, was selected. The addition of proteases and amylase to the bread homogenate promoted the microbial growth but it did not correspond to the increase of bioplastic production by the microorganism, that reach, under the experimental conditions, 1.53 g/L. An extraction procedure of the PHBV from cells, based on repeated washing with water, followed or not by a purification through ethanol precipitation, was applied instead of the conventional extraction with chloroform. Yield of PHBV obtained using the different extraction methods were 21.6 ± 3.6 (standard extraction/purification procedure with CHCl3:H2O mixture), 24.8 ± 3.0 (water-based extraction), and 19.8 ± 3.3 mg PHAs/g of wasted bread (water-based extraction followed by ethanol purification). Slightly higher hydroxyvalerate content (12.95 vs 10.78%, w/w) was found in PHBV obtained through the water-based extraction compared to the conventional one, moreover, the former was characterized by purity of 100% (w/w). Results demonstrated the suitability of wasted bread, supplemented with seawater, to be used as substrate for bioplastic production through fermentation. Results moreover demonstrated that a solvent-free extraction, exclusively based on osmotic shock, could be used to recover the bioplastic from cells.

18.
Front Microbiol ; 13: 914036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814678

RESUMEN

In this study, the genomes of the Weissella (W.) beninensis, W. diestrammenae, W. fabalis, W. fabaria, W. ghanensis, and W. uvarum type strains were sequenced and analyzed. Moreover, the ability of these strains to metabolize 95 carbohydrates was investigated, and the genetic determinants of such capability were searched within the sequenced genomes. 16S rRNA gene and genome-based-phylogeny of all the Weissella species described to date allowed a reassessment of the Weissella genus species groups. As a result, six distinct species groups within the genus, namely, W. beninensis, W. kandleri, W. confusa, W. halotolerans, W. oryzae, and W. paramesenteroides species groups, could be described. Phenotypic analyses provided further knowledge about the ability of the W. beninensis, W. ghanensis, W. fabaria, W. fabalis, W. uvarum, and W. diestrammenae type strains to metabolize certain carbohydrates and confirmed the interspecific diversity of the analyzed strains. Moreover, in many cases, the carbohydrate metabolism pathway and phylogenomic species group clustering overlapped. The novel insights provided in our study significantly improved the knowledge about the Weissella genus and allowed us to identify features that define the role of the analyzed type strains in fermentative processes and their biotechnological potential.

19.
Foods ; 11(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053921

RESUMEN

In an era characterized by land degradation, climate change, and a growing population, ensuring high-yield productions with limited resources is of utmost importance. In this context, the use of novel soil amendments and the exploitation of plant growth-promoting microorganisms potential are considered promising tools for developing a more sustainable primary production. This study aimed at investigating the potential of bread, which represents a large portion of the global food waste, to be used as an organic soil amendment. A bioprocessed wasted bread, obtained by an enzymatic treatment coupled with fermentation, together with unprocessed wasted bread were used as amendments in a pot trial. An integrated analytical plan aimed at assessing (i) the modification of the physicochemical properties of a typical Mediterranean alkaline agricultural soil, and (ii) the plant growth-promoting effect on escarole (Cichorium endivia var. Cuartana), used as indicator crop, was carried out. Compared to the unamended soils, the use of biomasses raised the soil organic carbon content (up to 37%) and total nitrogen content (up to 40%). Moreover, the lower pH and the higher organic acid content, especially in bioprocessed wasted bread, determined a major availability of Mn, Fe, and Cu in amended soils. The escaroles from pots amended with raw and bioprocessed bread had a number of leaves, 1.7- and 1.4-fold higher than plants cultivated on unamended pots, respectively, showing no apparent phytotoxicity and thus confirming the possible re-utilization of such residual biomasses as agriculture amendments.

20.
Microb Biotechnol ; 15(3): 915-930, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34132488

RESUMEN

We proposed a novel phenomic approach to track the effect of short-term exposures of Lactiplantibacillus plantarum and Leuconostoc pseudomesenteroides to environmental pressure induced by brewers' spent grain (BSG)-derived saccharides. Water-soluble BSG-based medium (WS-BSG) was chosen as model system. The environmental pressure exerted by WS-BSG shifted the phenotypes of bacteria in species- and strains-dependent way. The metabolic drift was growth phase-dependent and likely underlay the diauxic profile of organic acids production by bacteria in response to the low availability of energy sources. Among pentosans, metabolism of arabinose was preferred by L. plantarum and xylose by Leuc. pseudomesenteroides as confirmed by the overexpression of related genes. Bayesian variance analysis showed that phenotype switching towards galactose metabolism suffered the greatest fluctuation in L. plantarum. All lactic acid bacteria strains utilized more intensively sucrose and its plant-derived isomers. Sucrose-6-phosphate activity in Leuc. pseudomesenteroides likely mediated the increased consumption of raffinose. The increased levels of some phenolic compounds suggested the involvement of 6-phospho-ß-glucosidases in ß-glucosides degradation. Expression of genes encoding ß-glucoside/cellobiose-specific EII complexes and phenotyping highlighted an increased metabolism for cellobiose. Our reconstructed metabolic network will improve the understanding of how lactic acid bacteria may transform BSG into suitable food ingredients.


Asunto(s)
Lactobacillales , Teorema de Bayes , Celobiosa/metabolismo , Grano Comestible/metabolismo , Fermentación , Lactobacillales/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...