Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558077

RESUMEN

The production of biofuels, such as bioethanol from lignocellulosic biomass, is an important task within the sustainable energy concept. Understanding the metabolism of ethanologenic microorganisms for the consumption of sugar mixtures contained in lignocellulosic hydrolysates could allow the improvement of the fermentation process. In this study, the ethanologenic strain Escherichia coli MS04 was used to ferment hydrolysates from five different lignocellulosic agroindustrial wastes, which contained different glucose and xylose concentrations. The volumetric rates of glucose and xylose consumption and ethanol production depend on the initial concentration of glucose and xylose, concentrations of inhibitors, and the positive effect of acetate in the fermentation to ethanol. Ethanol yields above 80% and productivities up to 1.85 gEtOH/Lh were obtained. Furthermore, in all evaluations, a simultaneous co-consumption of glucose and xylose was observed. The effect of deleting the xyIR regulator was studied, concluding that it plays an important role in the metabolism of monosaccharides and in xylose consumption. Moreover, the importance of acetate was confirmed for the ethanologenic strain, showing the positive effect of acetate on the co-consumption rates of glucose and xylose in cultivation media and hydrolysates containing sugar mixtures.


Asunto(s)
Represión Catabólica , Escherichia coli , Fermentación , Escherichia coli/metabolismo , Xilosa/metabolismo , Glucosa/metabolismo , Azúcares/metabolismo , Etanol/metabolismo
2.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-34617569

RESUMEN

Teak wood residues were subjected to thermochemical pretreatment, enzymatic saccharification, and detoxification to obtain syrups with a high concentration of fermentable sugars for ethanol production with the ethanologenic Escherichia coli strain MS04. Teak is a hardwood, and thus a robust deconstructive pretreatment was applied followed by enzymatic saccharification. The resulting syrup contained 60 g l-1 glucose, 18 g l-1 xylose, 6 g l-1 acetate, less than 0.1 g l-1 of total furans, and 12 g l-1 of soluble phenolic compounds (SPCs). This concentration of SPC is toxic to E. coli, and thus two detoxification strategies were assayed: (1) treatment with Coriolopsis gallica laccase followed by addition of activated carbon and (2) overliming with Ca(OH)2. These reduced the phenolic compounds by 40% and 76%, respectively. The detoxified syrups were centrifuged and fermented with E. coli MS04. Cultivation with the overlimed hydrolysate showed a 60% higher volumetric productivity (0.45 gETOH l-1 hr-1). The bioethanol/sugar yield was over 90% in both strategies.


Asunto(s)
Etanol , Madera , Escherichia coli , Fermentación , Hidrólisis , Lignina
3.
Mater Sci Eng C Mater Biol Appl ; 121: 111650, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579431

RESUMEN

Microwave-mediated grafting of L-Arg onto naturally derived and stable multiradical poly(gallic acid) (PGAL) in aqueous media has been successfully achieved. This polymeric material has no adverse effect in human cells as there is no hemolytic activity upon MTT and Neutral Red assays. The analytical and computational characterization studies carried out in this study describe a helical molecular structure with random incorporation of L-Arginine pendant groups from PGAL's backbone. The antioxidant properties of the precursor polymer are preserved as proved by the elimination of stable DPPH and hydroxyl radical scavenging, as well as the FRAP and ORAC assays. Regarding the latter, the oxygen radical inhibition is enhanced compared to PGAL, which is attributed to the guanidyl moieties. PGAL-g-L-Arg displays antimicrobial activity against Gram (+) Listeria monocytogenes and Staphylococcus aureus strains with a MIC of 0.8 g/L and a bacteriostatic effect against Gram (-) Escherichia coli. Additionally, scanning electron and confocal fluorescence microscopies as well as crystal violet colorimetric assay demonstrate that the mechanism involved in the bacterial inhibition is related to the formation of porous channels on the membrane, which is discussed according to the helical secondary structure of the polymer and the amino acid guanidyl moieties interacting to bacterial membranes.


Asunto(s)
Antioxidantes , Ácido Gálico , Antibacterianos/farmacología , Antioxidantes/farmacología , Arginina , Ácido Gálico/farmacología , Humanos , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...