Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2774: 193-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38441766

RESUMEN

CRISPR activation provides an invaluable tool for experimental biologists to convert correlations into causation by directly observing phenotypic changes upon targeted changes in gene expression. With few exceptions, most diseases are caused by complex polygenic interactions, with multiple genes contributing to define the output of a gene network. As such researchers are increasingly interested in tools that can offer not only control but also the capacity to simultaneously upregulate multiple genes. The adaptation of CRISPR/Cas12a has provided a system especially suited to the tightly coordinated overexpression of multiple targeted genes. Here we describe an approach to test for active targeting crRNAs for dFnCas12a-VPR, before proceeding to generate and validate longer crRNA arrays for multiplexed targeting of genes of interest.


Asunto(s)
Redes Reguladoras de Genes , Personal de Salud , Animales , Humanos , Activación Transcripcional , Herencia Multifactorial , Mutagénesis Sitio-Dirigida , Mamíferos/genética
2.
Nano Lett ; 23(22): 10633-10641, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37916770

RESUMEN

Fluorescence microscopy enables specific visualization of proteins in living cells and has played an important role in our understanding of the protein subcellular location and function. Some proteins, however, show altered localization or function when labeled using direct fusions to fluorescent proteins, making them difficult to study in live cells. Additionally, the resolution of fluorescence microscopy is limited to ∼200 nm, which is 2 orders of magnitude larger than the size of most proteins. To circumvent these challenges, we previously developed LIVE-PAINT, a live-cell super-resolution approach that takes advantage of short interacting peptides to transiently bind a fluorescent protein to the protein-of-interest. Here, we successfully use LIVE-PAINT to image yeast membrane proteins that do not tolerate the direct fusion of a fluorescent protein by using peptide tags as short as 5-residues. We also demonstrate that it is possible to resolve multiple proteins at the nanoscale concurrently using orthogonal peptide interaction pairs.


Asunto(s)
Péptidos , Proteínas , Diagnóstico por Imagen , Saccharomyces cerevisiae , Colorantes Fluorescentes/química
3.
Sci Rep ; 13(1): 13617, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604855

RESUMEN

Escin is a mixture of over 30 glycosylated triterpenoid (saponin) structures, extracted from the dried fruit of horse chestnuts. Escin is currently used as an anti-inflammatory, and has potential applications in the treatment of arthritis and cancer. Engineered yeast would enable production of specific bioactive components of escin at industrial scale, however many saponins have been shown to be toxic to yeast. Here we report that a Saccharomyces cerevisiae strain specifically lacking the sterol C-5 desaturase gene ERG3, exhibits striking enhanced tolerance to escin treatment. Transcriptome analyses, as well as pre-mixing of escin with sterols, support the hypothesis that escin interacts directly with ergosterol, but not as strongly with the altered sterols present in erg3Δ. A diverse range of saponins are of commercial interest, and this research highlights the value of screening lipidome mutants to identify appropriate hosts for engineering the industrial production of saponins.


Asunto(s)
Saccharomyces cerevisiae , Saponinas , Saccharomyces cerevisiae/genética , Escina , Saponinas/farmacología , Esteroles/farmacología , Antiinflamatorios , Ácido Graso Desaturasas
4.
Protein Sci ; 32(2): e4558, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585831

RESUMEN

We present direct-LIVE-PAINT, an easy-to-implement approach for the nanoscopic imaging of protein structures in live cells using labeled binding peptides. We demonstrate the feasibility of direct-LIVE-PAINT with an actin-binding peptide fused to EGFP, the location of which can be accurately determined as it transiently binds to actin filaments. We show that direct-LIVE-PAINT can be used to image actin structures below the diffraction-limit of light and have used it to observe the dynamic nature of actin in live cells. We envisage a similar approach could be applied to imaging other proteins within live mammalian cells.


Asunto(s)
Citoesqueleto de Actina , Actinas , Animales , Actinas/metabolismo , Unión Proteica , Mamíferos
5.
Cell Syst ; 13(12): 950-973, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36549273

RESUMEN

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética , Animales , Transgenes/genética , Comunicación Celular , Mamíferos/genética
6.
ACS Synth Biol ; 11(11): 3629-3643, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36252276

RESUMEN

Thanks to its sophistication, the CRISPR/Cas system has been a widely used yeast genome editing method. However, CRISPR methods generally rely on preassembled DNAs and extra cloning steps to deliver gRNA, Cas protein, and donor DNA. These laborious steps might hinder its usefulness. Here, we propose an alternative method, Assembly and CRISPR-targeted in vivo Editing (ACtivE), that only relies on in vivo assembly of linear DNA fragments for plasmid and donor DNA construction. Thus, depending on the user's need, these parts can be easily selected and combined from a repository, serving as a toolkit for rapid genome editing without any expensive reagent. The toolkit contains verified linear DNA fragments, which are easy to store, share, and transport at room temperature, drastically reducing expensive shipping costs and assembly time. After optimizing this technique, eight loci proximal to autonomously replicating sequences (ARS) in the yeast genome were also characterized in terms of integration and gene expression efficiencies and the impacts of the disruptions of these regions on cell fitness. The flexibility and multiplexing capacity of the ACtivE were shown by constructing a ß-carotene pathway. In only a few days, >80% integration efficiency for single gene integration and >50% integration efficiency for triplex integration were achieved on Saccharomyces cerevisiae BY4741 from scratch without using in vitro DNA assembly methods, restriction enzymes, or extra cloning steps. This study presents a standardizable method to be readily employed to accelerate yeast genome engineering and provides well-defined genomic location alternatives for yeast synthetic biology and metabolic engineering purposes.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Indicadores y Reactivos/metabolismo , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN/metabolismo
7.
Nucleic Acids Res ; 50(1): 549-560, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34908140

RESUMEN

The adoption of CRISPR systems for the generation of synthetic transcription factors has greatly simplified the process for upregulating endogenous gene expression, with a plethora of applications in cell biology, bioproduction and cell reprogramming. The recently discovered CRISPR/Cas12a (Cas12a) systems offer extended potential, as Cas12a is capable of processing its own crRNA array, to provide multiple individual crRNAs for subsequent targeting from a single transcript. Here we show the application of dFnCas12a-VPR in mammalian cells, with the Francisella novicida Cas12a (FnCas12a) possessing a shorter PAM sequence than Acidaminococcus sp. (As) or Lachnospiraceae bacterium (Lb) variants, enabling denser targeting of genomic loci, while performing just as well or even better than the other variants. We observe that synergistic activation and multiplexing can be achieved using crRNA arrays but also show that crRNAs expressed towards the 5' of 6-crRNA arrays show evidence of enhanced activity. This not only represents a more flexible tool for transcriptional modulation but further expands our understanding of the design capabilities and limitations when considering longer crRNA arrays for multiplexed targeting.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Edición Génica/métodos , Células HEK293 , Humanos , Empalme de Proteína
8.
Metab Eng ; 67: 396-402, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411701

RESUMEN

CRISPR-enabled deaminase base editing has become a powerful tool for precisely editing nucleotides on the chromosome. In this study DNA helicases, such as Escherichia coli DnaB, were fused to activation-induced cytidine deaminase (AID) to form enzyme complexes which randomly introduces edited bases throughout the chromosome. DnaB-AID was found to increase 2.5 × 103 fold relative to the mutagenesis frequency of wildtype. 97.9% of these edits were observed on the leading strand during DNA replication suggesting deamination to be highly coordinated with DNA replication. Using DnaB-AID, a 371.4% increase in ß-carotene production was obtained following four rounds of editing. In Saccharomyces cerevisiae Helicase-AID was constructed by fusing AID to one of the subunits of eukaryotic helicase Mcm2-7 complex, MCM5. Using MCM5-AID, the average editing efficiency of five strains was 2.1 ± 0.4 × 103 fold higher than the native genomic mutation rate. MCM5-AID was able to improve ß-carotene production of S. cerevisiae 4742crt by 75.4% following eight rounds of editing. The S. cerevisiae MCM5-AID technique is the first biological tool for generating and accumulating single base mutations in eukaryotic chromosomes. Since the helicase complex is highly conservative in all eukaryotes, Helicase-AID could be adapted for various applications and research in all eukaryotic cells.


Asunto(s)
ADN Helicasas , Saccharomyces cerevisiae , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Helicasas/metabolismo , Genoma , Genómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Front Bioeng Biotechnol ; 9: 658325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150726

RESUMEN

Fed-batch cultures of Chinese Hamster Ovary cells have been used to produce high quantities of biotherapeutics, particularly monoclonal antibodies. However, a growing number of next-generation biotherapeutics, such as bi-specific antibodies and fusion proteins, are difficult to express using standard fed-batch processes. Decoupling cell growth and biotherapeutic production is becoming an increasingly desired strategy for the biomanufacturing industry, especially for difficult-to-express products. Cells are grown to a high cell density in the absence of recombinant protein production (the growth phase), then expression of the recombinant protein is induced and cell proliferation halted (the production phase), usually by combining an inducible gene expression system with a proliferation control strategy. Separating the growth and production phases allows cell resources to be more efficiently directed toward either growth or production, improving growth characteristics and enhancing the production of difficult to express proteins. However, current mammalian cell proliferation control methods rely on temperature shifts and chemical agents, which interact with many non-proliferation pathways, leading to variable impacts on product quality and culture viability. Synthetic biology offers an alternative approach by strategically targeting proliferation pathways to arrest cell growth but have largely remained unused in industrial bioproduction. Due to recent developments in microbial decoupling systems and advances in available mammalian cell engineering tools, we propose that the synthetic biology approach to decoupling growth and production needs revisiting.

10.
Environ Microbiol ; 23(5): 2473-2483, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684262

RESUMEN

The structure and diversity of all open microbial communities are shaped by individual births, deaths, speciation and immigration events; the precise timings of these events are unknowable and unpredictable. This randomness is manifest as ecological drift in the population dynamics, the importance of which has been a source of debate for decades. There are theoretical reasons to suppose that drift would be imperceptible in large microbial communities, but this is at odds with circumstantial evidence that effects can be seen even in huge, complex communities. To resolve this dichotomy we need to observe dynamics in simple systems where key parameters, like migration, birth and death rates can be directly measured. We monitored the dynamics in the abundance of two genetically modified strains of Escherichia coli, with tuneable growth characteristics, that were mixed and continually fed into 10 identical chemostats. We demonstrated that the effects of demographic (non-environmental) stochasticity are very apparent in the dynamics. However, they do not conform to the most parsimonious and commonly applied mathematical models, where each stochastic event is independent. For these simple models to reproduce the observed dynamics we need to invoke an 'effective community size', which is smaller than the census community size.


Asunto(s)
Microbiota , Escherichia coli/genética , Modelos Teóricos , Dinámica Poblacional
12.
Nat Biotechnol ; 39(1): 35-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32690970

RESUMEN

Current base editors (BEs) catalyze only base transitions (C to T and A to G) and cannot produce base transversions. Here we present BEs that cause C-to-A transversions in Escherichia coli and C-to-G transversions in mammalian cells. These glycosylase base editors (GBEs) consist of a Cas9 nickase, a cytidine deaminase and a uracil-DNA glycosylase (Ung). Ung excises the U base created by the deaminase, forming an apurinic/apyrimidinic (AP) site that initiates the DNA repair process. In E. coli, we used activation-induced cytidine deaminase (AID) to construct AID-nCas9-Ung and found that it converts C to A with an average editing specificity of 93.8% ± 4.8% and editing efficiency of 87.2% ± 6.9%. For use in mammalian cells, we replaced AID with rat APOBEC1 (APOBEC-nCas9-Ung). We tested APOBEC-nCas9-Ung at 30 endogenous sites, and we observed C-to-G conversions with a high editing specificity at the sixth position of the protospacer between 29.7% and 92.2% and an editing efficiency between 5.3% and 53.0%. APOBEC-nCas9-Ung supplements the current adenine and cytidine BEs (ABE and CBE, respectively) and could be used to target G/C disease-causing mutations.


Asunto(s)
Sistemas CRISPR-Cas/genética , Citosina/metabolismo , ADN Glicosilasas , Edición Génica/métodos , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Adenina/metabolismo , Animales , Emparejamiento Base/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Citidina Desaminasa , Reparación del ADN/genética , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Escherichia coli/genética , Guanina/metabolismo , Ratas , Uracil-ADN Glicosidasa
13.
Artículo en Inglés | MEDLINE | ID: mdl-32733867

RESUMEN

"Crossing Kingdoms" is an artist-led experiment in the biological fusion of mammalian and yeast cells and the cultural discussions of these phenomena. We present this collaboration as an experiment in responsible research and innovation (RRI), an institutionalized format for ensuring that researchers reflect on the wider social dimensions of their work. Our methods challenged us as researchers to reflect on interdisciplinary collaboration and the possibility of innovating in biology for artistic purposes, challenged audiences to reflect on biological boundaries, and challenged both groups to reflect on what it means to be responsible in science. We conclude that our experiment in RRI was successful because we have asked unexpected questions-a contrast to RRI implemented as a standard protocol. Our experiment has implications for biologists and artists pursuing interdisciplinary collaborations with each other and for researchers thinking about implementing RRI as more than a box-ticking exercise.

14.
ACS Synth Biol ; 9(7): 1781-1789, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32551562

RESUMEN

Base editing technology based on clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) is a recent addition to the family of CRISPR technologies. Compared with the traditional CRISPR/Cas9 technology, it does not rely on DNA double strand break and homologous recombination, and can realize gene inactivation and point mutation more quickly and simply. Herein, we first developed a base editing method for genome editing in Bacillus subtilis utilizing CRISPR/dCas9 (a fully nuclease-deficient mutant of Cas9 from S. pyogenes) and activation-induced cytidine deaminase (AID). This method achieved three and four loci simultaneous editing with editing efficiency up to 100% and 50%, respectively. Our base editing system in B. subtilis has a 5 nt editing window, which is similar to previously reported base editing in other microorganisms. We demonstrated that the plasmid curing rate is almost 100%, which is advantageous for multiple rounds of genome engineering in B. subtilis. Finally, we applied multiplex genome editing to generate a B. subtilis 168 mutant strain with eight inactive extracellular protease genes in just two rounds of base editing and plasmid curing, suggesting that it is a powerful tool for gene manipulation in B. subtilis and industrial applications in the future.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Roturas del ADN de Doble Cadena , Sitios Genéticos , Genoma Bacteriano , Plásmidos/genética , Plásmidos/metabolismo , Mutación Puntual , Streptococcus pyogenes/enzimología
15.
PLoS One ; 15(5): e0231980, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32357188

RESUMEN

Triterpenoids are high-value plant metabolites with numerous applications in medicine, agriculture, food, and home and personal care products. However, plants produce triterpenoids in low abundance, and their complex structures make their chemical synthesis prohibitively expensive and often impossible. As such, the yeast Saccharomyces cerevisiae has been explored as an alternative means of production. An important triterpenoid is oleanolic acid because it is the precursor to many bioactive triterpenoids of commercial interest, such as QS-21 which is being evaluated as a vaccine adjuvant in clinical trials against HIV and malaria. Oleanolic acid is derived from 2,3-oxidosqualene (natively produced by yeast) via a cyclisation and a multi-step oxidation reaction, catalysed by a ß-amyrin synthase and a cytochrome P450 of the CYP716A subfamily, respectively. Although many homologues have been characterised, previous studies have used arbitrarily chosen ß-amyrin synthases and CYP716As to produce oleanolic acid and its derivatives in yeast. This study presents the first comprehensive comparison of ß-amyrin synthase and CYP716A enzyme activities in yeast. Strains expressing different homologues are compared for production, revealing 6.3- and 4.5-fold differences in ß-amyrin and oleanolic acid productivities and varying CYP716A product profiles, which are important to consider when engineering strains for the production of bioactive oleanolic acid derivatives.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Transferasas Intramoleculares/metabolismo , Ácido Oleanólico/biosíntesis , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Cromatografía de Gases y Espectrometría de Masas , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análisis , Plásmidos/genética , Plásmidos/metabolismo , Alineación de Secuencia
16.
Biotechnol Bioeng ; 117(6): 1805-1816, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32077487

RESUMEN

The CRISPR-Cas9 system has become increasingly popular for genome engineering across all fields of biological research, including in the Gram-positive model organism Bacillus subtilis. A major drawback for the commercial use of Cas9 is the IP landscape requiring a license for its use, as well as reach-through royalties on the final product. Recently an alternative CRISPR nuclease, free to use for industrial R&D, MAD7 was released by Inscripta (CO). Here we report the first use of MAD7 for gene editing in B. subtilis, in which editing rates of 93% and 100% were established. Additionally, we engineer the first reported catalytically inactive MAD7 (dMAD7) variant (D877A, E962A, and D1213A) and demonstrate its utility for CRISPR interference (CRISPRi) at up to 71.3% reduction of expression at single and multiplexed target sites within B. subtilis. We also confirm the CRISPR-based editing mode of action in B. subtilis providing evidence that the nuclease-mediated DNA double-strand break acts as a counterselection mechanism after homologous recombination of the donor DNA.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Endonucleasas/genética , Eubacterium/enzimología , Edición Génica/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Eubacterium/genética , Mutación Puntual
17.
Chembiochem ; 21(13): 1856-1860, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32003116

RESUMEN

Selectively fluorinated compounds are found frequently in pharmaceutical and agrochemical products where currently 25-30 % of optimised compounds emerge from development containing at least one fluorine atom. There are many methods for the site-specific introduction of fluorine, but all are chemical and they often use environmentally challenging reagents. Biochemical processes for C-F bond formation are attractive, but they are extremely rare. In this work, the fluorinase enzyme, originally identified from the actinomycete bacterium Streptomyces cattleya, is engineered into Escherichia coli in such a manner that the organism is able to produce 5'-fluorodeoxyadenosine (5'-FDA) from S-adenosyl-l-methionine (SAM) and fluoride in live E. coli cells. Success required the introduction of a SAM transporter and deletion of the endogenous fluoride efflux capacity in order to generate an E. coli host that has the potential for future engineering of more elaborate fluorometabolites.


Asunto(s)
Flúor/metabolismo , Ingeniería Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flúor/química , Halogenación , Isomerismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , S-Adenosilmetionina/metabolismo , Streptomyces/enzimología
18.
Yeast ; 37(1): 27-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800968

RESUMEN

Yeast strains have been used extensively as robust microbial cell factories for the production of bulk and fine chemicals, including biofuels (bioethanol), complex pharmaceuticals (antimalarial drug artemisinin and opioid pain killers), flavours, and fragrances (vanillin, nootkatone, and resveratrol). In many cases, it is of benefit to suppress or modify ergosterol biosynthesis during strain engineering, for example, to increase thermotolerance or to increase metabolic flux through an alternate pathway. However, the impact of modifying ergosterol biosynthesis on engineered strains is discussed sparsely in literature, and little attention has been paid to the implications of these modifications on the general health and well-being of yeast. Importantly, yeast with modified sterol content exhibit a wide range of phenotypes, including altered organization and dynamics of plasma membrane, altered susceptibility to chemical treatment, increased tolerance to high temperatures, and reduced tolerance to other stresses such as high ethanol, salt, and solute concentrations. Here, we review the wide-ranging phenotypes of viable Saccharomyces cerevisiae strains with altered sterol content and discuss the implications of these for yeast as microbial cell factories.


Asunto(s)
Ergosterol/biosíntesis , Ingeniería Metabólica , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biocombustibles , Fermentación , Fenotipo , Esteroles/análisis
19.
Nucleic Acids Res ; 47(21): 11452-11460, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31667500

RESUMEN

Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.


Asunto(s)
Integrasas/fisiología , Empalme de Proteína/genética , Recombinación Genética , Trans-Empalme/genética , Secuencia de Aminoácidos , Clonación Molecular/métodos , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Exteínas/genética , Integrasas/metabolismo , Inteínas/genética , Organismos Modificados Genéticamente , Ingeniería de Proteínas , Serina/metabolismo , Especificidad por Sustrato/genética
20.
Nat Commun ; 10(1): 3132, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296848

RESUMEN

The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'. This has been corrected in both the PDF and HTML versions of the Comment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...