Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 13(4): e0193922, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35916401

RESUMEN

Enteric pathogens such as enterohemorrhagic E. coli (EHEC) and its surrogate murine model Citrobacter rodentium sense indole levels within the gut to navigate its biogeography and modulate virulence gene expression. Indole is a microbiota-derived signal that is more abundant in the intestinal lumen, with its concentration decreasing at the epithelial lining where it is absorbed. E. coli, but not C. rodentium, produces endogenous indole because it harbors the tnaA gene. Microbiota-derived exogenous indole is sensed by the CpxAR two-component system, where CpxA is a membrane-bound histidine-sensor-kinase (HK) and CpxR is a response regulator (RR). Indole inhibits CpxAR function leading to decreased expression of the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form lesions on enterocytes. In our transcriptome studies comparing wild-type (WT) EHEC and ΔtnaA ± indole, one of the most upregulated genes by indole is ygeV, which is a predicted orphan RR. Because of the role YgeV plays in the indole signaling cascade, we renamed this gene indole sensing regulator (isrR). In the absence of endogenous indole, IsrR activates LEE gene expression. IsrR only responds to endogenous indole, with exogenous indole still blocking virulence gene expression independently from IsrR. Notably, a C. rodentium isrR mutant is attenuated for murine infection, depicting delayed death, lower intestinal colonization, and LEE gene expression. IsrR aids in discriminating between microbiota-derived (exogenous) and endogenous self-produced indole in fine-tuning virulence gene expression by enteric pathogens in the intestine. IMPORTANCE Enteric pathogens sense the complex intestinal chemistry to find a suitable colonization niche. The microbiota plays an important part in shaping this chemistry. Here we show that the abundant microbiota-derived exogenous signal indole impacts host-pathogen interactions by allowing enteric pathogens to discriminate between the luminal environment, where expression of virulence genes is an unnecessary energy burden, from the epithelial surface, where this gene expression is needed for host colonization. We describe a new signaling node through the regulator IsrR that allows for this shift. These findings establish a mechanism through which pathogens discriminate from self- and microbiota-derived signaling to establish infection.


Asunto(s)
Escherichia coli Enterohemorrágica , Proteínas de Escherichia coli , Animales , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Ratones , Virulencia
2.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031742

RESUMEN

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Asunto(s)
Endocannabinoides/metabolismo , Enterobacteriaceae/patogenicidad , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Citrobacter rodentium/patogenicidad , Colon/microbiología , Colon/patología , Endocannabinoides/química , Infecciones por Enterobacteriaceae/microbiología , Femenino , Microbioma Gastrointestinal , Glicéridos/química , Glicéridos/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Salmonella/patogenicidad , Virulencia
3.
Cell Host Microbe ; 28(1): 41-53.e8, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521224

RESUMEN

The gut-brain axis is crucial to microbial-host interactions. The neurotransmitter serotonin is primarily synthesized in the gastrointestinal (GI) tract, where it is secreted into the lumen and subsequently removed by the serotonin transporter, SERT. Here, we show that serotonin decreases virulence gene expression by enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium, a murine model for EHEC. The membrane-bound histidine sensor kinase, CpxA, is a bacterial serotonin receptor. Serotonin induces dephosphorylation of CpxA, which inactivates the transcriptional factor CpxR controlling expression of virulence genes, notably those within the locus of enterocyte effacement (LEE). Increasing intestinal serotonin by genetically or pharmacologically inhibiting SERT decreases LEE expression and reduces C. rodentium loads. Conversely, inhibiting serotonin synthesis increases pathogenesis and decreases host survival. As other enteric bacteria contain CpxA, this signal exploitation may be engaged by other pathogens. Additionally, repurposing serotonin agonists to inhibit CpxA may represent a potential therapeutic intervention for enteric bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/patogenicidad , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas Quinasas/metabolismo , Serotonina/fisiología , Animales , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Tracto Gastrointestinal/microbiología , Regulación Bacteriana de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Antagonistas de la Serotonina , Transcriptoma , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
ACS Cent Sci ; 6(2): 197-206, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32123737

RESUMEN

Escherichia coli is a common inhabitant of the human microbiota and a beacon model organism in biology. However, an understanding of its signaling systems that regulate population-level phenotypes known as quorum sensing remain incomplete. Here, we define the structure and biosynthesis of autoinducer-3 (AI-3), a metabolite of previously unknown structure involved in the pathogenesis of enterohemorrhagic E. coli (EHEC). We demonstrate that novel AI-3 analogs are derived from threonine dehydrogenase (Tdh) products and "abortive" tRNA synthetase reactions, and they are distributed across a variety of Gram-negative and Gram-positive bacterial pathogens. In addition to regulating virulence genes in EHEC, we show that the metabolites exert diverse immunological effects on primary human tissues. The discovery of AI-3 metabolites and their biochemical origins now provides a molecular foundation for investigating the diverse biological roles of these elusive yet widely distributed bacterial signaling molecules.

5.
Proc Natl Acad Sci U S A ; 115(45): E10712-E10719, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348782

RESUMEN

The gut metabolic landscape is complex and is influenced by the microbiota, host physiology, and enteric pathogens. Pathogens have to exquisitely monitor the biogeography of the gastrointestinal tract to find a suitable niche for colonization. To dissect the important metabolic pathways that influence virulence of enterohemorrhagic Escherichia coli (EHEC), we conducted a high-throughput screen. We generated a dataset of regulatory pathways that control EHEC virulence expression under anaerobic conditions. This unraveled that the cysteine-responsive regulator, CutR, converges with the YhaO serine import pump and the fatty acid metabolism regulator FadR to optimally control virulence expression in EHEC. CutR activates expression of YhaO to increase activity of the YhaJ transcription factor that has been previously shown to directly activate the EHEC virulence genes. CutR enhances FadL, which is a pump for fatty acids that represses inhibition of virulence expression by FadR, unmasking a feedback mechanism responsive to metabolite fluctuations. Moreover, CutR and FadR also augment murine infection by Citrobacter rodentium, which is a murine pathogen extensively employed as a surrogate animal model for EHEC. This high-throughput approach proved to be a powerful tool to map the web of cellular circuits that allows an enteric pathogen to monitor the gut environment and adjust the levels of expression of its virulence repertoire toward successful infection of the host.


Asunto(s)
Aminoácidos/metabolismo , Escherichia coli/patogenicidad , Ácidos Grasos/metabolismo , Intestinos/microbiología , Escherichia coli/genética , Oxidación-Reducción , Virulencia
6.
J Bacteriol ; 189(14): 5387-92, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17496094

RESUMEN

Transcription of the locus of enterocyte effacement (LEE) genes in enterohemorrhagic Escherichia coli (EHEC) is regulated by the LEE-encoded Ler and GrlR/GrlA proteins as well as the non-LEE-encoded regulator QseA. This work demonstrates that GrlR/GrlA activate LEE2 transcription in a Ler-independent fashion, whereas transcription of grlRA is activated by QseA in both Ler-dependent and -independent manners.


Asunto(s)
Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Fosfoproteínas/genética , Transactivadores/genética , Secuencia de Bases , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Humanos , Intestino Grueso/citología , Intestino Grueso/microbiología , Modelos Genéticos , Datos de Secuencia Molecular , Fosfoproteínas/metabolismo , Homología de Secuencia de Ácido Nucleico , Transactivadores/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...