Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Med ; 29(4): 950-962, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37069360

RESUMEN

Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Accidente Cerebrovascular , Humanos , Células Endoteliales/patología , Estudio de Asociación del Genoma Completo , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen por Resonancia Magnética/métodos , Genómica
3.
Transl Psychiatry ; 11(1): 613, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34864818

RESUMEN

Measures of information processing speed vary between individuals and decline with age. Studies of aging twins suggest heritability may be as high as 67%. The Illumina HumanExome Bead Chip genotyping array was used to examine the association of rare coding variants with performance on the Digit-Symbol Substitution Test (DSST) in community-dwelling adults participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. DSST scores were available for 30,576 individuals of European ancestry from nine cohorts and for 5758 individuals of African ancestry from four cohorts who were older than 45 years and free of dementia and clinical stroke. Linear regression models adjusted for age and gender were used for analysis of single genetic variants, and the T5, T1, and T01 burden tests that aggregate the number of rare alleles by gene were also applied. Secondary analyses included further adjustment for education. Meta-analyses to combine cohort-specific results were carried out separately for each ancestry group. Variants in RNF19A reached the threshold for statistical significance (p = 2.01 × 10-6) using the T01 test in individuals of European descent. RNF19A belongs to the class of E3 ubiquitin ligases that confer substrate specificity when proteins are ubiquitinated and targeted for degradation through the 26S proteasome. Variants in SLC22A7 and OR51A7 were suggestively associated with DSST scores after adjustment for education for African-American participants and in the European cohorts, respectively. Further functional characterization of its substrates will be required to confirm the role of RNF19A in cognitive function.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gerociencia , Adulto , Envejecimiento , Cognición , Humanos , Polimorfismo de Nucleótido Simple , Ubiquitina-Proteína Ligasas
4.
Nat Commun ; 11(1): 6285, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293549

RESUMEN

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedades de los Pequeños Vasos Cerebrales/genética , Hipertensión/genética , Accidente Cerebrovascular/genética , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico , Imagen de Difusión Tensora , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/epidemiología , Masculino , Anamnesis , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Medición de Riesgo , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
5.
Nat Commun ; 11(1): 4796, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963231

RESUMEN

Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/ß-catenin, TGF-ß and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.


Asunto(s)
Envejecimiento/genética , Encéfalo , Estudio de Asociación del Genoma Completo , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estructuras Cromosómicas , Cognición , Femenino , Genómica , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Neurology ; 95(24): e3331-e3343, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32913026

RESUMEN

OBJECTIVE: To identify common genetic variants associated with the presence of brain microbleeds (BMBs). METHODS: We performed genome-wide association studies in 11 population-based cohort studies and 3 case-control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of APOE ε2 and ε4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs. RESULTS: BMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the APOE region reached genome-wide significance for its association with BMB (lead single nucleotide polymorphism rs769449; odds ratio [OR]any BMB [95% confidence interval (CI)] 1.33 [1.21-1.45]; p = 2.5 × 10-10). APOE ε4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19-1.50]; p = 1.0 × 10-6) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86-1.25]; p = 0.68). APOE ε2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB. CONCLUSIONS: Genetic variants in the APOE region are associated with the presence of BMB, most likely due to the APOE ε4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.


Asunto(s)
Apolipoproteína E4/genética , Apolipoproteínas E/genética , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Enfermedades de los Pequeños Vasos Cerebrales/genética , Estudio de Asociación del Genoma Completo , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Alelos , Apolipoproteína E2/genética , Estudios de Casos y Controles , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Riesgo , Sustancia Blanca/diagnóstico por imagen
7.
Cereb Cortex ; 30(7): 4121-4139, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198502

RESUMEN

We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade-albeit in a very limited manner-to behaviors as complex as the choice of one's occupation.


Asunto(s)
Aptitud/fisiología , Selección de Profesión , Corteza Cerebral/crecimiento & desarrollo , Percepción de Forma/genética , Corteza Visual/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Grosor de la Corteza Cerebral , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas de Microfilamentos/genética , Persona de Mediana Edad , Análisis de Componente Principal , Proteínas de Unión al ARN/genética , Transcriptoma , Adulto Joven , Proteínas de Unión al GTP rho/genética , Proteínas tau/genética
8.
Front Genet ; 10: 856, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608108

RESUMEN

Library preparation for whole-exome sequencing is a critical step serving the enrichment of the regions of interest. For Ion Proton, there are only two exome library preparation methods available, AmpliSeq and SureSelect. Although of major interest, a comparison of the two methods is hitherto missing in the literature. Here, we systematically evaluate the performance of AmpliSeq and SureSelect and present an improved variant calling pipeline. We used 12 in-house DNA samples with genome-wide and exome microarray data and a commercially available reference DNA (NA12878) for evaluation. Both methods had a high concordance (>97%) with microarray genotypes and, when validating against NA12878, a sensitivity and positive predictive values of >93% and >80%, respectively. Application of our variant calling pipeline decreased the number of false positive variants dramatically by 90% and resulted in positive predictive value of 97%. This improvement is highly relevant in research as well as clinical setting.

9.
Commun Biol ; 2: 285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396565

RESUMEN

Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume. Two loci, associated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported to associate with intracranial and hippocampal volume, respectively. We identified four loci previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3 and 14q23.1 for occipital lobe volume. The associated variants were located in regions enriched for histone modifications (DAAM1 and THBS3), or close to genes causing Mendelian brain-related diseases (ZIC4 and FGFRL1). No genetic overlap between lobar volumes and neurological or psychiatric diseases was observed. Our findings reveal part of the complex genetics underlying brain development and suggest a role for regulatory regions in determining brain volumes.


Asunto(s)
Lóbulo Frontal/crecimiento & desarrollo , Sitios Genéticos , Variación Genética , Lóbulo Occipital/crecimiento & desarrollo , Lóbulo Parietal/crecimiento & desarrollo , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Frontal/diagnóstico por imagen , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Herencia , Humanos , Imagen por Resonancia Magnética , Lóbulo Occipital/diagnóstico por imagen , Tamaño de los Órganos/genética , Lóbulo Parietal/diagnóstico por imagen , Fenotipo , Lóbulo Temporal/efectos de los fármacos , Reino Unido
10.
Brain ; 142(4): 1009-1023, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30859180

RESUMEN

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based association tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single variant association testing (Pdiscovery = 8.21 × 10-5, Preplication = 5.25 × 10-3, Pcombined = 4.72 × 10-5) and of NOTCH3 using gene-based tests (Pdiscovery = 1.61 × 10-2, Preplication = 3.99 × 10-2, Pcombined = 5.31 × 10-3). Follow-up analysis identified significant association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4%) carrying heterozygote genotypes at known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease and those contributing to the common, multifactorial form of the disease.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Receptor Notch3/genética , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/genética , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Estudios de Cohortes , Femenino , Heterocigoto , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Receptor Notch3/metabolismo , Receptor Notch3/fisiología , Accidente Cerebrovascular/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Secuenciación del Exoma/métodos
11.
Neurology ; 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651383

RESUMEN

OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p [BI] = 4.4 × 10-10; p [SSBI] = 1.2 × 10-4), diabetes (p [BI] = 1.7 × 10-8; p [SSBI] = 2.8 × 10-3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.

12.
Nat Commun ; 9(1): 3945, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258056

RESUMEN

The volume of the lateral ventricles (LV) increases with age and their abnormal enlargement is a key feature of several neurological and psychiatric diseases. Although lateral ventricular volume is heritable, a comprehensive investigation of its genetic determinants is lacking. In this meta-analysis of genome-wide association studies of 23,533 healthy middle-aged to elderly individuals from 26 population-based cohorts, we identify 7 genetic loci associated with LV volume. These loci map to chromosomes 3q28, 7p22.3, 10p12.31, 11q23.1, 12q23.3, 16q24.2, and 22q13.1 and implicate pathways related to tau pathology, S1P signaling, and cytoskeleton organization. We also report a significant genetic overlap between the thalamus and LV volumes (ρgenetic = -0.59, p-value = 3.14 × 10-6), suggesting that these brain structures may share a common biology. These genetic associations of LV volume provide insights into brain morphology.


Asunto(s)
Genoma Humano , Ventrículos Laterales/anatomía & histología , Anciano , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Tamaño de los Órganos/genética
13.
Stroke ; 49(8): 1812-1819, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30002152

RESUMEN

Background and Purpose- White matter hyperintensities (WMH) on brain magnetic resonance imaging are typical signs of cerebral small vessel disease and may indicate various preclinical, age-related neurological disorders, such as stroke. Though WMH are highly heritable, known common variants explain a small proportion of the WMH variance. The contribution of low-frequency/rare coding variants to WMH burden has not been explored. Methods- In the discovery sample we recruited 20 719 stroke/dementia-free adults from 13 population-based cohort studies within the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, among which 17 790 were of European ancestry and 2929 of African ancestry. We genotyped these participants at ≈250 000 mostly exonic variants with Illumina HumanExome BeadChip arrays. We performed ethnicity-specific linear regression on rank-normalized WMH in each study separately, which were then combined in meta-analyses to test for association with single variants and genes aggregating the effects of putatively functional low-frequency/rare variants. We then sought replication of the top findings in 1192 adults (European ancestry) with whole exome/genome sequencing data from 2 independent studies. Results- At 17q25, we confirmed the association of multiple common variants in TRIM65, FBF1, and ACOX1 ( P<6×10-7). We also identified a novel association with 2 low-frequency nonsynonymous variants in MRPL38 (lead, rs34136221; PEA=4.5×10-8) partially independent of known common signal ( PEA(conditional)=1.4×10-3). We further identified a locus at 2q33 containing common variants in NBEAL1, CARF, and WDR12 (lead, rs2351524; Pall=1.9×10-10). Although our novel findings were not replicated because of limited power and possible differences in study design, meta-analysis of the discovery and replication samples yielded stronger association for the 2 low-frequency MRPL38 variants ( Prs34136221=2.8×10-8). Conclusions- Both common and low-frequency/rare functional variants influence WMH. Larger replication and experimental follow-up are essential to confirm our findings and uncover the biological causal mechanisms of age-related WMH.


Asunto(s)
Encéfalo/diagnóstico por imagen , Exoma/genética , Variación Genética/genética , Imagen por Resonancia Magnética/métodos , Proteínas Mitocondriales/genética , Sustancia Blanca/diagnóstico por imagen , Estudios de Cohortes , Humanos
14.
Hum Brain Mapp ; 38(5): 2408-2423, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28145022

RESUMEN

BACKGROUND: The combination of genetics and imaging has improved their understanding of the brain through studies of aggregate measures obtained from high-resolution structural imaging. Voxel-wise analyses have the potential to provide more detailed information of genetic influences on the brain. Here they report a large-scale study of the heritability of gray matter at voxel resolution (1 × 1 × 1 mm). METHODS: Validated voxel-based morphometry (VBM) protocols were applied to process magnetic resonance imaging data of 3,239 unrelated subjects from a population-based study and 491 subjects from two family-based studies. Genome-wide genetic data was used to estimate voxel-wise gray matter heritability of the unrelated subjects and pedigree-structure was used to estimate heritability in families. They subsequently associated two genetic variants, known to be linked with subcortical brain volume, with most heritable voxels to determine if this would enhance their association signals. RESULTS: Voxels significantly heritable in both estimates mapped to subcortical structures, but also voxels in the language areas of the left hemisphere were found significantly heritable. When comparing regional patterns of heritability, family-based estimates were higher than population-based estimates. However, regional consistency of the heritability measures across study designs was high (Pearson's correlation coefficient = 0.73, P = 2.6 × 10-13 ). They further show enhancement of the association signal of two previously discovered genetic loci with subcortical volume by using only the most heritable voxels. CONCLUSION: Gray matter voxel-wise heritability can be reliably estimated with different methods. Combining heritability estimates from multiple studies is feasible to construct reliable heritability maps of gray matter voxels. Hum Brain Mapp 38:2408-2423, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Salud de la Familia , Ligamiento Genético , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Anciano , Anciano de 80 o más Años , Austria , Mapeo Encefálico , Estudios de Cohortes , Planificación en Salud Comunitaria , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Países Bajos
15.
Am J Hum Genet ; 100(1): 51-63, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017375

RESUMEN

Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits.


Asunto(s)
Eritrocitos/metabolismo , Eritropoyesis/genética , Proteínas de Unión al ARN/genética , Grupos Raciales/genética , África/etnología , Alelos , Animales , Teorema de Bayes , Etnicidad/genética , Europa (Continente)/etnología , Asia Oriental/etnología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Pez Cebra/genética
16.
J Child Orthop ; 5(6): 415-24, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23205143

RESUMEN

UNLABELLED: PURPOSE/BACKGROUND/INTRODUCTION: The aim of this study was to retrospectively evaluate the impact of neonatal sonographic hip screening using Graf's method for the management and outcome of orthopaedic treatment of decentered hip joints with developmental dysplasia of the hip (DDH), using three decades (1978-2007) of clinical information compiled in a medical database. METHODS: Three representative cohorts of consecutive cases of decentered hip joints were selected according to different search criteria and inclusion and exclusion parameters: (1) cohort 1 (1978-1982; n = 80), without sonographic screening; (2) cohort 2.1 (1994-1996; n = 91), with nationwide established general sonographic screening according to the Graf-method; (3) cohort 2.2 (2003-2005; n = 91), with sonographic screening including referred cases for open reduction from non-screened populations. These three cohorts were compared for the following parameters: age at initial treatment, successful closed reduction, necessary overhead traction, necessary adductor-tenotomy, rate of open reduction, rate of avascular necrosis (AVN) and rate of secondary acetabuloplasty. RESULTS: The age at initial treatment was reduced from 5.5 months in the first cohort to 2 months in the two subsequent two cohorts and the rate of successful closed reduction increased from 88.7 to 98.9 and 95.6%, respectively. There was a statistically significant improvement in six out of seven parameters with sonographic hip screening; only the rate of secondary acetabuloplasty did not improve significantly. CONCLUSION: Compared to the era before the institution of a sonographic hip screening programme according to the Graf-method in Austria in 1992, ultrasound screening based-treatment of decentered hip joints has become safer, shorter and simpler: "safer" means lower rate of AVN, "shorter" means less treatment time due to earlier onset and "simpler" means that the devices are now less invasive and highly standardized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...