Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 882: 163395, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37044335

RESUMEN

Rewetting previously drained peatlands restores the critical function of peatlands as long-term carbon storages and sinks currently threatened by climate change and additional human-induced disturbances. Understanding and projecting the restoration process by rewetting, however, currently face a pressing challenge, the lack of consistent and gap-free records of important carbon cycling indicators of peatlands such as the gross primary production (GPP) over long term. In this study, we reconstructed the GPP in a rewetted peatland called Zarnekow (Fluxnet-ID: DE-Zrk) in Germany from 2000 to 2020 by combining long-term satellite observations and limited-term tower-based eddy covariance (EC) measurements based on Random Forest regression models. The R2 between the reconstructed data and EC data was 0.6. The reasonable reconstruction of long-term GPP enabled trend analysis that identified two distinct periods of decreasing/increasing in GPP due to rewetting and droughts. Rewetting in the winter of 2004 and 2005 stabilized GPP after a decreasing period. A drought in 2018 significantly increased GPP, and GPP remained high over the following two years. Furthermore, the month-specific trends show significant seasonality at this site, specifically, an increasing trend over the 21 years in the growing-season months of June to August and a decreasing trend in the other months. The most important variables for satellite-based estimates of GPP at this site include total evapotranspiration, land surface temperature, enhanced vegetation index and near-infrared reflectance vegetation index. Long-term analyses of carbon fluxes through the combination of satellite observations and EC measurements provide crucial insights into the restoration of carbon sequestration functions in rewetted peatlands.

2.
Glob Chang Biol ; 29(7): 1870-1889, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36647630

RESUMEN

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.


Asunto(s)
Ecosistema , Taiga , Carbono , Dióxido de Carbono , Tundra , Metano , Ciclo del Carbono
3.
Glob Chang Biol ; 29(8): 2313-2334, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36630533

RESUMEN

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.


Asunto(s)
Ecosistema , Humedales , Metano/metabolismo , Regiones Árticas , Suelo , Dióxido de Carbono/análisis
4.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36353841

RESUMEN

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Asunto(s)
Secuestro de Carbono , Ecosistema , Suelo , Dióxido de Carbono/análisis , Tundra , Regiones Árticas , Ciclo del Carbono , Plantas , Carbono/análisis
5.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316310

RESUMEN

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Asunto(s)
Ecosistema , Hielos Perennes , Estaciones del Año , Regiones Árticas , Cambio Climático
6.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314726

RESUMEN

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Asunto(s)
Secuestro de Carbono , Ecosistema , Regiones Árticas , Dióxido de Carbono , Cambio Climático , Plantas , Estaciones del Año , Suelo , Tundra
7.
Nat Commun ; 12(1): 2266, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859182

RESUMEN

Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.

8.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33913236

RESUMEN

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Dióxido de Carbono/análisis , Reproducibilidad de los Resultados , Estaciones del Año , Suelo , Tundra , Incertidumbre
9.
Nat Ecol Evol ; 5(4): 487-494, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33619357

RESUMEN

Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range. We find thresholds to the global temperature-ecosystem respiration relationship at high and low air temperatures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinction in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.


Asunto(s)
Ciclo del Carbono , Ecosistema , Respiración , Suelo , Temperatura
10.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190685, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892736

RESUMEN

Peatland rewetting aims at stopping the emissions of carbon dioxide (CO2) and establishing net carbon sinks. However, in times of global warming, restoration projects must increasingly deal with extreme events such as drought periods. Here, we evaluate the effect of the European summer drought 2018 on vegetation development and the exchange of methane (CH4) and CO2 in two rewetted minerotrophic fens (Hütelmoor-Hte and Zarnekow-Zrk) including potential carry-over effects in the post-drought year. Drought was a major stress factor for the established vegetation but also promoted the rapid spread of new vegetation, which will likely gain a lasting foothold in Zrk. Accordingly, drought increased not only respiratory CO2 losses but also photosynthetic CO2 uptake. Altogether, the drought reduced the net CO2 sink in Hte, while it stopped the persistent net CO2 emissions of Zrk. In addition, the drought reduced CH4 emissions in both fens, though this became most apparent in the post-drought year and suggests a lasting shift towards non-methanogenic organic matter decomposition. Occasional droughts can be beneficial for the restoration of the peatland carbon sink function if the newly grown vegetation increases CO2 sequestration in the long term. Nonetheless, care must be taken to prevent extensive peat decay. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Cambio Climático , Sequías , Gases de Efecto Invernadero/análisis , Fenómenos Fisiológicos de las Plantas , Humedales , Dióxido de Carbono/análisis , Secuestro de Carbono , Europa (Continente) , Calentamiento Global , Dispersión de las Plantas
11.
Glob Chang Biol ; 24(9): 3976-3989, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29697179

RESUMEN

Waterbodies in the arctic permafrost zone are considered a major source of the greenhouse gas methane (CH4 ) in addition to CH4 emissions from arctic wetlands. However, the spatio-temporal variability of CH4 fluxes from waterbodies complicates spatial extrapolation of CH4 measurements from single waterbodies. Therefore, their contribution to the CH4 budget of the arctic permafrost zone is not yet well understood. Using the example of two study areas of 1,000 km² each in the Mackenzie Delta, Canada, we approach this issue (i) by analyzing correlations on the landscape scale between numerous waterbodies and CH4 fluxes and (ii) by analyzing the influence of the spatial resolution of CH4 flux data on the detected relationships. A CH4 flux map with a resolution of 100 m was derived from two aircraft eddy-covariance campaigns in the summers of 2012 and 2013. We combined the CH4 flux map with high spatial resolution (2.5 m) waterbody maps from the Permafrost Region Pond and Lake Database and classified the waterbody depth based on Sentinel-1 SAR backscatter data. Subsequently, we reduced the resolution of the CH4 flux map to analyze if different spatial resolutions of CH4 flux data affected the detectability of relationships between waterbody coverage, number, depth, or size and the CH4 flux. We did not find consistent correlations between waterbody characteristics and the CH4 flux in the two study areas across the different resolutions. Our results indicate that waterbodies in permafrost landscapes, even if they seem to be emission hot spots on an individual basis or contain zones of above average emissions, do currently not necessarily translate into significant CH4 emission hot spots on a regional scale, but their role might change in a warmer climate.


Asunto(s)
Lagos , Metano/análisis , Hielos Perennes , Regiones Árticas , Canadá , Monitoreo del Ambiente , Gases de Efecto Invernadero , Estaciones del Año , Humedales
12.
Sci Rep ; 7(1): 5828, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28725016

RESUMEN

Arctic permafrost caps vast amounts of old, geologic methane (CH4) in subsurface reservoirs. Thawing permafrost opens pathways for this CH4 to migrate to the surface. However, the occurrence of geologic emissions and their contribution to the CH4 budget in addition to recent, biogenic CH4 is uncertain. Here we present a high-resolution (100 m × 100 m) regional (10,000 km²) CH4 flux map of the Mackenzie Delta, Canada, based on airborne CH4 flux data from July 2012 and 2013. We identify strong, likely geologic emissions solely where the permafrost is discontinuous. These peaks are 13 times larger than typical biogenic emissions. Whereas microbial CH4 production largely depends on recent air and soil temperature, geologic CH4 was produced over millions of years and can be released year-round provided open pathways exist. Therefore, even though they only occur on about 1% of the area, geologic hotspots contribute 17% to the annual CH4 emission estimate of our study area. We suggest that this share may increase if ongoing permafrost thaw opens new pathways. We conclude that, due to permafrost thaw, hydrocarbon-rich areas, prevalent in the Arctic, may see increased emission of geologic CH4 in the future, in addition to enhanced microbial CH4 production.

13.
Ambio ; 46(Suppl 1): 53-69, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28116680

RESUMEN

The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Cubierta de Hielo , Regiones Árticas , Seguimiento de Parámetros Ecológicos , Océanos y Mares , Hielos Perennes
14.
Proc Natl Acad Sci U S A ; 112(15): 4594-9, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25831506

RESUMEN

Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Asunto(s)
Cambio Climático , Clima , Ecosistema , Humedales , Dióxido de Carbono/metabolismo , Ecología/métodos , Geografía , Actividades Humanas , Humanos , Metano/metabolismo , Modelos Teóricos , Óxido Nitroso/metabolismo , Plantas/clasificación , Plantas/metabolismo , Temperatura , Incertidumbre
15.
Glob Chang Biol ; 20(11): 3439-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24889888

RESUMEN

In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.


Asunto(s)
Ecosistema , Calor , Modelos Teóricos , Regiones Árticas , Asia , Europa (Continente) , Bosques , Pradera , América del Norte , Tundra , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...