Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373919

RESUMEN

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Arcilla , Bosques , Carbono
2.
Commun Earth Environ ; 4(1): 298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665193

RESUMEN

Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.

3.
Glob Chang Biol ; 28(6): 2081-2094, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921474

RESUMEN

Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2  = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.


Asunto(s)
Sequías , Ecosistema , Biomasa , Bosques , Plantas , Árboles
4.
Nat Commun ; 12(1): 7161, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887397

RESUMEN

Climate change will have considerable impact on the global economy. Estimates of the economic damages due to climate change have focused on the effect of average temperature, but not the effect of other important climate variables. Related research has not explored the sub-annual economic cycles which may be impacted by climate volatility. To address these deficits, we propose a flexible, non-linear framework which includes a wide range of climate variables to estimate changes in GDP and project sub-annual economic cycle adjustments (period, amplitude, trough depth). We find that the inclusion of a more robust set of climate variables improves model performance by over 20%. Importantly, the improved model predicts an increase in GDP rather than a decrease when only temperature is considered. We also find that climate influences the sub-annual economics of all but one province in Canada. Highest stressed were the Prairie and Atlantic regions. Least stressed was the Southeastern region. Our study advances understanding of the nuances in the relationship between climate change and economic output in Canada. It also provides a method that can be applied to related economies globally to target adaptation and resilience management.

5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845017

RESUMEN

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
6.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521711

RESUMEN

Living walls are important vertical greening systems with modular prevegetated structures. Studies have suggested that living walls have many social benefits as an ecological engineering technique with notable potential for reconciliation ecology. Despite these benefits, there are currently no mature workflows or technologies for monitoring the health status and water stress of living wall systems. To partially fill the current knowledge gap related to water stress, we acquired thermal, multispectral, and hyperspectral remote sensing data from an indoor living wall in the Cloud Forest of the Gardens by the Bay, Singapore. The surface temperature (Ts) and a normalized difference vegetation index (NDVI) were obtained from these data to construct a Ts-NDVI space for applying the "triangle method". A simple and effective algorithm was proposed to determine the dry and wet edges, the key components of the said method. The pixels associated with the dry and wet edges were then selected and highlighted to directly display the areas under water-stress conditions. Our results suggest that the proposed algorithm can provide a reasonable overview of the water-stress information of the living wall; therefore, our method can be simple and effective to monitor the health status of a living wall. Furthermore, our work confirms that the triangle method can be transferred from the outdoors to an indoor environment.


Asunto(s)
Deshidratación , Monitoreo del Ambiente , Bosques , Fenómenos Fisiológicos de las Plantas , Tecnología de Sensores Remotos , Singapur , Temperatura
7.
Int J Biometeorol ; 64(4): 701-711, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31925517

RESUMEN

Even though existing remote-sensing-based drought indices are widely used in many different types of ecosystems, their utility has not been widely assessed in tropical dry forests (TDFs). The aim of this study is to evaluate the performance of three remote-sensing-based drought indices, the Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI), for meteorological drought monitoring in TDFs using the moderate-resolution imaging spectroradiometer (MODIS) products. The correlation between the VCI, TCI, and VHI and multiple time scales of the Standardized Precipitation Index (SPI) (1, 3, 6, 9, 12, 15, 18, 21, 24 months) for each month (January to December) and each season (dry season, dry-to-wet season, wet season and wet-to-dry season) were conducted using the Pearson correlation analysis. We also correlated year-to-year changes of satellite-based drought indices with the changes of the in situ annual SPI (A_SPI) which provides annual information on the mean meteorological drought. The analysis reveals that the ability of these remote-sensing-based drought indices for meteorological drought monitoring varies with timing, and the TCI outperforms the VCI and VHI in terms of seasonal and annual scale. These remote-sensing indices performed well in monitoring meteorological drought in the dry season, poorly in the in the dry-to-wet season, and moderately in the wet season. The TCI performed best in monitoring meteorological drought in the wet-to-dry period, followed by VHI, whereas the VCI performed worst. All of these remote-sensing-based drought indices failed to detect drought in May during the green-up period and in September, October, and November when the water content in the root regions was abundant. Our results indicate that the evapotranspiration of TDFs is more sensitive than canopy greenness to detect meteorological drought. Results from this study increase the ability to provide real-time drought monitoring and early warnings of drought in TDFs.


Asunto(s)
Sequías , Ecosistema , Bosques , Imágenes Satelitales , Estaciones del Año
8.
Sensors (Basel) ; 18(10)2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275400

RESUMEN

Commercially available autonomous photochemical reflectance index (PRI) sensors are a new development in the remote sensing field that offer novel opportunities for a deeper exploration of vegetation physiology dynamics. In this study, we evaluated the reliability of autonomous PRI sensors (SRS-PRI) developed by METER Group Inc. as proxies of light use efficiency (LUE) in an aspen (Populus tremuloides) forest stand. Before comparisons between PRI and LUE measurements were made, the optical SRS-PRI sensor pairs required calibrations to resolve diurnal and seasonal patterns properly. An offline diurnal calibration procedure was shown to account for variable sky conditions and diurnal illumination changes affecting sensor response. Eddy covariance measurements provided seasonal gross primary productivity (GPP) measures as well as apparent canopy quantum yield dynamics (α). LUE was derived from the ratio of GPP to absorbed photosynthetically active radiation (APAR). Corrected PRI values were derived after diurnal and midday cross-calibration of the sensor's 532 nm and 570 nm fore-optics, and closely related to both LUE (R² = 0.62, p < 0.05) and α (R² = 0.72, p < 0.05). A LUE model derived from corrected PRI values showed good correlation to measured GPP (R² = 0.77, p < 0.05), with an accuracy comparable to results obtained from an α driven LUE model (R² = 0.79, p < 0.05). The automated PRI sensors proved to be suitable proxies of light use efficiency. The onset of continuous PRI sensors signifies new opportunities for explicitly examining the cause of changing PRI, LUE, and productivity over time and space. As such, this technology represents great value for the flux, remote sensing and modeling community.

9.
Ecology ; 97(12): 3271-3277, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912027

RESUMEN

Lianas are an important component of tropical forests, where they reduce tree growth, fecundity, and survival. Competition for light from lianas may be intense; however, the amount of light that lianas intercept is poorly understood. We used a large-scale liana-removal experiment to quantify light interception by lianas in a Panamanian secondary forest. We measured the change in plant area index (PAI) and forest structure before and after cutting lianas (for 4 yr) in eight 80 m × 80 m plots and eight control plots (16 plots total). We used ground-based LiDAR to measure the 3-dimensional canopy structure before cutting lianas, and then annually for 2 yr afterwards. Six weeks after cutting lianas, mean plot PAI was 20% higher in control vs. liana removal plots. One yr after cutting lianas, mean plot PAI was ~17% higher in control plots. The differences between treatments diminished significantly 2 yr after liana cutting and, after 4 yr, trees had fully compensated for liana removal. Ground-based LiDAR revealed that lianas attenuated light in the upper- and middle-forest canopy layers, and not only in the upper canopy as was previously suspected. Thus, lianas compete with trees by intercepting light in the upper- and mid-canopy of this forest.


Asunto(s)
Bosques , Plantas/clasificación , Panamá , Clima Tropical
10.
Sci Adv ; 2(5): e1501639, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386528

RESUMEN

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Ecosistema , Bosques , Biodiversidad , Biomasa , Conservación de los Recursos Naturales , Granjas , Geografía , América Latina , Clima Tropical
11.
PLoS One ; 10(9): e0137911, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26371876

RESUMEN

Agricultural expansion is causing deforestation in Minas Gerais, Brazil, converting savanna and tropical dry forest to farmland, and in 2012, Brazil's Forest Code was revised with the government reducing deforestation restrictions. Understanding the effects of policy change on rates and locations of natural ecosystem loss is imperative. In this paper, deforestation in Minas Gerais was simulated annually until 2020 using Dinamica Environment for Geoprocessing Objects (Dinamica EGO). This system is a state-of-the-art land use and cover change (LUCC) model which incorporates government policy, landscape maps, and other biophysical and anthropogenic datasets. Three studied scenarios: (i) business as usual, (ii) increased deforestation, and (iii) decreased deforestation showed more transition to agriculture from shrubland compared to forests, and consistent locations for most deforestation. The probability of conversion to agriculture is strongly tied to areas with the smallest patches of original biome remaining. Increases in agricultural revenue are projected to continue with a loss of 25% of the remaining Cerrado land in the next decade if profit is maximized. The addition of biodiversity value as a tax on land sale prices, estimated at over $750,000,000 USD using the cost of extracting and maintaining current species ex-situ, can save more than 1 million hectares of shrubland with minimal effects on the economy of the State of Minas Gerais. With environmental policy determining rates of deforestation and economics driving the location of land clearing, site-specific protection or market accounting of externalities is needed to balance economic development and conservation.


Asunto(s)
Conservación de los Recursos Naturales/economía , Gobierno , Modelos Teóricos , Políticas , Agricultura , Brasil , Factores Socioeconómicos , Análisis Espacial
12.
PLoS One ; 10(2): e0117659, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692675

RESUMEN

AIM: The general goal of this study is to investigate and analyze patterns of ecophysiological leaf traits and spectral response among life forms (trees, shrubs and lianas) in the Cerrado ecosystem. In this study, we first tested whether life forms are discriminated through leaf level functional traits. We then explored the correlation between leaf-level plant functional traits and spectral reflectance. LOCATION: Serra do Cipo National Park, Minas Gerais, Brazil. METHODS: Six ecophysiological leaf traits were selected to best characterize differences between life forms in the woody plant community of the Cerrado. Results were compared to spectral vegetation indices to determine if plant groups provide means to separate leaf spectral responses. RESULTS: Values obtained from leaf traits were similar to results reported from other tropical dry sites. Trees and shrubs significantly differed from lianas in terms of the percentage of leaf water content and Specific Leaf Area. Spectral indices were insufficient to capture the differences of these key traits between groups, though indices were still adequately correlated to overall trait variation. CONCLUSION: The importance of life forms as biochemical and structurally distinctive groups is a significant finding for future remote sensing studies of vegetation, especially in arid and semi-arid environments. The traits we found as indicative of these groups (SLA and water content) are good candidates for spectral characterization. Future studies need to use the full wavelength (400 nm-2500 nm) in order to capture the potential response of these traits. The ecological linkage to water balance and life strategies encourages these traits as starting points for modeling plant communities using hyperspectral remote sensing.


Asunto(s)
Pradera , Hojas de la Planta/química , Tecnología de Sensores Remotos , Brasil , Pigmentos Biológicos/química , Hojas de la Planta/metabolismo , Análisis Espectral , Clima Tropical
13.
J Plant Physiol ; 169(12): 1134-42, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22608180

RESUMEN

Leaf water content is an important variable for understanding plant physiological properties. This study evaluates a spectral analysis approach, continuous wavelet analysis (CWA), for the spectroscopic estimation of leaf gravimetric water content (GWC, %) and determines robust spectral indicators of GWC across a wide range of plant species from different ecosystems. CWA is both applied to the Leaf Optical Properties Experiment (LOPEX) data set and a synthetic data set consisting of leaf reflectance spectra simulated using the leaf optical properties spectra (PROSPECT) model. The results for the two data sets, including wavelet feature selection and GWC prediction derived using those features, are compared to the results obtained from a previous study for leaf samples collected in the Republic of Panamá (PANAMA), to assess the predictive capabilities and robustness of CWA across species. Furthermore, predictive models of GWC using wavelet features derived from PROSPECT simulations are examined to assess their applicability to measured data. The two measured data sets (LOPEX and PANAMA) reveal five common wavelet feature regions that correlate well with leaf GWC. All three data sets display common wavelet features in three wavelength regions that span 1732-1736 nm at scale 4, 1874-1878 nm at scale 6, and 1338-1341 nm at scale 7 and produce accurate estimates of leaf GWC. This confirms the applicability of the wavelet-based methodology for estimating leaf GWC for leaves representative of various ecosystems. The PROSPECT-derived predictive models perform well on the LOPEX data set but are less successful on the PANAMA data set. The selection of high-scale and low-scale features emphasizes significant changes in both overall amplitude over broad spectral regions and local spectral shape over narrower regions in response to changes in leaf GWC. The wavelet-based spectral analysis tool adds a new dimension to the modeling of plant physiological properties with spectroscopy data.


Asunto(s)
Ecosistema , Modelos Biológicos , Hojas de la Planta/química , Plantas/clasificación , Agua/análisis , Modelos Estadísticos , Panamá , Probabilidad , Tecnología de Sensores Remotos , Especificidad de la Especie , Análisis Espectral , Análisis de Ondículas
14.
Sensors (Basel) ; 11(4): 3831-51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163825

RESUMEN

Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.


Asunto(s)
Fotograbar/métodos , Comunicaciones por Satélite , Tabebuia/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Panamá , Dinámica Poblacional , Clima Tropical
15.
Rev. bras. entomol ; 53(3): 404-414, 2009. ilus, tab
Artículo en Inglés | LILACS | ID: lil-529633

RESUMEN

Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF) located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera) was the most prolific gall-inducing species, responsible for the largest proportion of galls (77 percent) observed. Leaves were the most frequently galled plant organ (63 percent), while the most common gall morphotype was of a spherical shape (30 percent). The two plant species, Baccharis dracunculifolia (Asteraceae) and Celtis brasiliensis (Cannabaceae), presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.


Artrópodes indutores de galhas são muito ricos em espécies nas formações vegetais no sudeste do Brasil. Três fragmentos de Floresta Sazonal Tropical Seca (FSTS) foram selecionados nas montanhas do sudeste da cadeia do Espinhaço para a primeira pesquisa de organismos indutores de galhas nesse tipo de vegetação. Encontramos 92 morfotipos distintos de galhas em vários órgãos de 51 espécies de plantas hospedeiras pertencentes à 19 famílias. A maioria das galhas (77 por cento) foi induzida pela família Cecidomyiidae (Diptera). A folha foi o órgão mais atacado (63 por cento), enquanto o morfotipo mais comum foi a forma esférica (30 por cento). As espécies hospedeiras que apresentaram um maior número de morfotipos de galhas foram Baccharis dracunculifolia (Asteraceae) e Celtis brasiliensis (Cannabaceae), cada uma com cinco morfotipos de galha. Este é o primeiro estudo com galhas induzidas por artrópodes em áreas FSTS no Brasil. Dada a intensa pressão antrópica nas áreas de FSTS, a alta riqueza encontrada nesse estudo de artrópodes indutores de galhas aponta a necessidade de um maior esforço para se compreender a diversidade desses ecossistemas.

16.
IEEE Trans Pattern Anal Mach Intell ; 28(5): 684-93, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16640256

RESUMEN

In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Teorema de Bayes , Almacenamiento y Recuperación de la Información/métodos , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...