Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(33): 13381-13388, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183933

RESUMEN

The photocatalytic generation of H2 using covalent organic frameworks (COFs) is gaining more interest. While numerous reports have focused on the production of H2 from deionized water using COFs, the inability to produce H2 from industrial wastewater or seawater is a common limitation in many reported catalysts. Additionally, many of these reports lack a clear path to scale up the catalyst synthesis. In this study, we explore the prospect of hybridizing a COF with gC3N4 to create a robust photocatalyst for efficient H2 generation. This hybrid exhibits outstanding performance not only in deionized water, but also in wastewater, and simulated seawater. Furthermore, we explore the feasibility of the bulk-scale synthesis and successfully produce a 20 g hybrid catalyst in a single batch, and the synthesis method is scalable to achieve the commercial target. Remarkably, a maximum HER rate of 94 873 µmol g-1 h-1 and 109 125 µmol g-1 h-1 was obtained for the hybrid catalyst from industrial wastewater and simulated seawater, respectively. The performance of bulk-scale batches closely matches that of the small-scale ones. This research paves the way for the utilization of organic photocatalysts on a commercial scale, offering a promising solution for sustainable large-scale H2 production.

2.
Angew Chem Int Ed Engl ; 63(18): e202402259, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38421233

RESUMEN

Oligo(phenyleneethynylene)s (OPEs) have attracted widespread attention due to their remarkable (opto)electronic and photophysical properties, which have enabled numerous applications. The versatile functionalization possibilities of OPEs make them unique candidates to form various shape-persistent geometries, including linear, triangular, rectangular, hexagonal and macrocyclic. However, as a result of this structural variety, it is oftentimes challenging to correlate molecular design with self-assembly properties. In this minireview, we have classified OPEs based on their molecular shapes and correlated them with their self-assembly behavior in solution. Particularly, we provide important insights into the aggregation propensity of the different molecular shapes and how to tune the association strength using various non-covalent interactions. Our classification will enable a better understanding of the structure-property correlation in OPEs, which is key to develop supramolecular functional materials.

3.
Chemistry ; 30(19): e202304169, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270385

RESUMEN

Helical nanographenes have garnered substantial attention owing to their finely adjustable optical and semiconducting properties. The strategic integration of both helicity and heteroatoms into the nanographene structure, facilitated by a boron-oxygen-based multiple resonance (MR) thermally activated delayed fluorescence (TADF), elevates its photophysical and chiroptical features. This signifies the introduction of an elegant category of helical nanographene that combines optical (TADF) and chiroptical (CPL) features. In this direction, we report the synthesis, optical, and chiroptical properties of boron, oxygen-doped Π-extended helical nanographene. The π-extension induces distortion in the DOBNA-incorporated nanographene, endowing a pair of helicenes, (P)-B2NG, and (M)-B2NG exhibiting circularly polarized luminescence with glum of -2.3×10-3 and +2.5×10-3, respectively. B2NG exhibited MR-TADF with a lifetime below 5 µs, and a reasonably high fluorescence quantum yield (50 %). Our molecular design enriches the optical and chiroptical properties of nanographenes and opens up new opportunities in multidisciplinary fields.

4.
Chem Asian J ; 18(13): e202300276, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37158669

RESUMEN

The synthetic feasibility and excellent luminescence features of organic molecules attracted much attention and were eventually found useful in lighting applications. In this context, a solvent-free organic liquid having attractive thermally activated delayed fluorescence features in bulk along with high processability has prime importance. Herein, we report a series of naphthalene monoimide-based solvent-free organic liquids exhibiting cyan to red thermally activated delayed fluorescence with luminescence quantum yields up to 80% and lifetimes between 10 to 45 µs. An effective approach explored energy transfer between liquid donors with various emitters exhibiting tunable emission colors, including white. The high processability of liquid emitters improved the compatibility with polylactic acid and was used for developing multicolor emissive objects using 3D printing. Our demonstration of the thermally activated delayed fluorescence liquid will be much appreciated as a processable alternate emissive material suitable for large-area lighting, display, and related applications.

5.
Angew Chem Int Ed Engl ; 62(3): e202212934, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36266975

RESUMEN

Aesthetic designs from nature enable new knowledge to be gained and, at the same time, inspire scientific models. In this context, multicomponent macrocycles embody the advantage of precisely positioning the structural units to achieve efficient communication between them. However, the construction of a functionalizable macrocycle for ultrafast charge separation and stabilization has not been attempted. Herein, we report the synthesis, crystal structure, and transient absorption of a new functionalizable macrocycle consisting of an oligothiophene-ring-strapped perylene bisimide. Transient absorption results point to a sequential improvement in charge separation and stabilization from the macrocycle to the corresponding linear dimer and 2D polymer due to the unique design. Our macrocycle design with a supportive spatial arrangement of the donor and acceptor units will inspire the development of more complex synthetic systems with exciting electron-transfer and charge-separation features.

6.
Nanoscale ; 13(24): 10780-10784, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34124717

RESUMEN

Luminescent solvent-free organic liquids are known for their enhanced quantum yield, color tunability, and availability of a matrix for other dopants to generate hybrid luminescent materials with improved features for newer applications. Herein, we report a donor-acceptor based luminescent "exciplex liquid" by utilizing the slightly different electron affinity of the acceptor molecules. A red-shifted broad exciplex emission exhibited by the donor-acceptor pair even at a lower concentration of the acceptor (0.001 equiv.) indicates high efficiency in the solvent-free state. A detailed NMR study revealed weak intermolecular interactions between the donor and acceptor in the solvent-free matrix that stabilizes the exciplex liquid. The failure of structurally similar solid counterparts to form an exciplex confirms the advantage of the available supportive liquid matrix. Besides, the luminescent exciplex liquid is found efficient in sensing application, which is unachievable by either the individual liquids or their solid counterparts. Here, a transition of a donor-acceptor pair from a solid to solvent-free liquid results in a new hybrid liquid that can be an alternative for solid sensor materials.

7.
Org Biomol Chem ; 19(5): 1004-1008, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33459322

RESUMEN

Room temperature phosphorescence (RTP) of metal-free organic molecules is a hot topic of current research interest. RTP can be enhanced through aggregation, crystallization, and the support of polymers and host-guest assemblies. The characteristics of highly phosphorescent aggregates formed from conventional chromophores make them ideal candidates for many potential applications. In this direction, we focused on the aggregation-induced phosphorescence of an anthraquinone derivative AqC6 in solution and in crystal state. The weakly emissive dilute solution exhibits a tunable emission with enhanced intensity and room temperature phosphorescence by increasing the concentration and solvent-antisolvent combination. The enhanced phosphorescence of crystals has been recreated in the solution by making use of aggregation. Interestingly, the support of PMMA enabled AqC6 to achieve enhanced processability, phosphorescence lifetime (174 ms) and quantum yield (5%).

8.
Chem Commun (Camb) ; 52(71): 10771-4, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27511290

RESUMEN

Molecular self-assembly of nonamphiphilic α,ß-hybrid foldamers based on urea-tethered anthranilic acid-proline (Ant-Pro) foldamers is reported. These self-assembled hollow vesicular architectures can take up and release the anticancer hydrophobic drug curcumin.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Urea/química , Antineoplásicos/metabolismo , Curcumina/química , Curcumina/metabolismo , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Prolina/química , ortoaminobenzoatos/química
9.
Angew Chem Int Ed Engl ; 51(14): 3391-5, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22374578

RESUMEN

Illuminating! Isolation of a π-core by covalently attached flexible hydrocarbon chains has been employed to synthesize blue-emitting oligo(p-phenylenevinylene) (OPV) liquids with tunable viscosity and optical properties. A solvent-free, stable, white-light emitting ink/paint, which can be applied onto various surfaces and even onto LEDs, was made by blending of liquid OPVs with emissive solid dopants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA