Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38834165

RESUMEN

In this report, non-isomerisable analogs of arginine tRNA (Arg-triazole-tRNA) have been synthesized as tools to study tRNA-dependent aminoacyl-transferases. The synthesis involves the incorporation of 1,4 substituted-1,2,3 triazole ring to mimic the ester bond that connects the amino acid to the terminal adenosine in the natural substrate. The synthetic procedure includes (i) a coupling between 2'- or 3'-azido-adenosine derivatives and a cytidine phosphoramidite to access dinucleotide molecules, (ii) Cu-catalyzed cycloaddition reactions between 2'- or 3'-azido dinucleotide in the presence of an alkyne molecule mimicking the arginine, providing the corresponding Arg-triazole-dinucleotides, (iii) enzymatic phosphorylation of the 5'-end extremity of the Arg-triazole-dinucleotides with a polynucleotide kinase, and (iv) enzymatic ligation of the 5'-phosphorylated dinucleotides with a 23-nt RNA micro helix that mimics the acceptor arm of arg-tRNA or with a full tRNAarg. Characterization of nucleoside and nucleotide compounds involved MS spectrometry, 1H, 13C and 31P NMR analysis. This strategy allows to obtain the pair of the two stable regioisomers of arg-tRNA analogs (2' and 3') which are instrumental to explore the regiospecificity of arginyl transferases enzyme. In our study, a first binding assay of the arg-tRNA micro helix with the Arginyl-tRNA-protein transferase 1 (ATE1) was performed by gel shift assays.

2.
ACS Omega ; 8(4): 3850-3860, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743074

RESUMEN

Aminoacyl- and peptidyl-tRNA are specific biomolecules involved in many biological processes, from ribosomal protein synthesis to the synthesis of peptidoglycan precursors. Here, we report a post-synthetic approach based on traceless Staudinger ligation for the synthesis of a stable amide bond to access aminoacyl- or peptidyl-di-nucleotide. A series of amino-acid and peptide ester phenyl phosphines were synthetized, and their reactivity was studied on a 2'-N3 di-nucleotide. The corresponding 2'-amide di-nucleotides were obtained and characterized by LC-HRMS, and mechanistic interpretations of the influence of the amino acid phenyl ester phosphine were proposed. We also demonstrated that enzymatic 5'-OH phosphorylation is compatible with the acylated di-nucleotide, allowing the possibility to access stable aminoacylated-tRNA.

3.
Nucleic Acids Res ; 50(15): 8529-8546, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904807

RESUMEN

Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.


Asunto(s)
ARN Bacteriano , ARN Pequeño no Traducido , Animales , Bacterias/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Hierro/metabolismo , Ratones , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Viruses ; 15(1)2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36680049

RESUMEN

Translation initiation of the hepatitis C virus (HCV) mRNA depends on an internal ribosome entry site (IRES) that encompasses most of the 5'UTR and includes nucleotides of the core coding region. This study shows that the polypyrimidine-tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the HCV 5'UTR, stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Our results show that PTB1 and PTB4, but not PTB2, stimulate HCV IRES activity in HuH-7 and HEK293T cells. In HuH-7 cells, PTB1 promotes HCV IRES-mediated initiation more strongly than PTB4. Mutations in PTB1, PTB4, RRM1/RRM2, or RRM3/RRM4, which disrupt the RRM's ability to bind RNA, abrogated the protein's capacity to stimulate HCV IRES activity in HuH-7 cells. In HEK293T cells, PTB1 and PTB4 stimulate HCV IRES activity to similar levels. In HEK293T cells, mutations in RRM1/RRM2 did not impact PTB1's ability to promote HCV IRES activity; and mutations in PTB1 RRM3/RRM4 domains reduced, but did not abolish, the protein's capacity to stimulate HCV IRES activity. In HEK293T cells, mutations in PTB4 RRM1/RRM2 abrogated the protein's ability to promote HCV IRES activity, and mutations in RRM3/RRM4 have no impact on PTB4 ability to enhance HCV IRES activity. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity in a cell type-specific manner. We conclude that PTB1 and PTB4, but not PTB2, act as IRES transacting factors of the HCV IRES.


Asunto(s)
Hepatitis C , Proteína de Unión al Tracto de Polipirimidina , Humanos , Regiones no Traducidas 5' , Células HEK293 , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/genética , Sitios Internos de Entrada al Ribosoma , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
5.
Noncoding RNA ; 7(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34842779

RESUMEN

As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.

6.
Methods Mol Biol ; 2323: 13-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086270

RESUMEN

RNA is a pivotal element of the cell which is most of the time found in complex with protein(s) in a cellular environment. RNA can adopt three-dimensional structures that may form specific binding sites not only for proteins but for all sorts of molecules. Since the early days of molecular biology, strategies to probe RNA structure have been developed. Such probes are small molecules or RNases that most of the time specifically react with single strand nucleotides. The precise reaction or cleavage site can be mapped by reverse transcription. It appears that nucleotides in close contact or in proximity of a ligand are no longer reactive to these probes. Carrying the RNA probing experiment in parallel in presence and absence of a ligand yield differences that are known as the ligand "footprint." Such footprints allow for the identification of the precise site of the ligand interaction, but also reveals RNA structural rearrangement upon ligand binding. Here we provide an experimental and analytical workflow to carry RNA footprinting experiments.


Asunto(s)
Biología Computacional/métodos , Técnicas de Sonda Molecular/instrumentación , Proteínas de Unión al ARN/metabolismo , ARN/química , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Humanos , Conformación de Ácido Nucleico , Ribonucleasas/metabolismo
7.
Nucleic Acids Res ; 48(15): 8276-8289, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32735675

RESUMEN

The manual production of reliable RNA structure models from chemical probing experiments benefits from the integration of information derived from multiple protocols and reagents. However, the interpretation of multiple probing profiles remains a complex task, hindering the quality and reproducibility of modeling efforts. We introduce IPANEMAP, the first automated method for the modeling of RNA structure from multiple probing reactivity profiles. Input profiles can result from experiments based on diverse protocols, reagents, or collection of variants, and are jointly analyzed to predict the dominant conformations of an RNA. IPANEMAP combines sampling, clustering and multi-optimization, to produce secondary structure models that are both stable and well-supported by experimental evidences. The analysis of multiple reactivity profiles, both publicly available and produced in our study, demonstrates the good performances of IPANEMAP, even in a mono probing setting. It confirms the potential of integrating multiple sources of probing data, informing the design of informative probing assays.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Programas Informáticos , Amebozoos/genética , Benchmarking , Conjuntos de Datos como Asunto , Mutación , ARN/genética
8.
Methods ; 162-163: 108-127, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31145972

RESUMEN

Determination of the tridimensional structure of ribonucleic acid molecules is fundamental for understanding their function in the cell. A common method to investigate RNA structures of large molecules is the use of chemical probes such as SHAPE (2'-hydroxyl acylation analyzed by primer extension) reagents, DMS (dimethyl sulfate) and CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate), the reaction of which is dependent on the local structural properties of each nucleotide. In order to understand the interplay between local flexibility, sugar pucker, canonical pairing and chemical reactivity of the probes, we performed all-atom molecular dynamics simulations on a set of RNA molecules for which both tridimensional structure and chemical probing data are available and we analyzed the correlations between geometrical parameters and the chemical reactivity. Our study confirms that SHAPE reactivity is guided by the local flexibility of the different chemical moieties but suggests that a combination of multiple parameters is needed to better understand the implications of the reactivity at the molecular level. This is also the case for DMS and CMCT for which the reactivity appears to be more complex than commonly accepted.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleótidos/química , ARN/química , Acilación , CME-Carbodiimida/análogos & derivados , CME-Carbodiimida/química , Enlace de Hidrógeno , Radical Hidroxilo/química , Indicadores y Reactivos/química , ARN/genética , ARN/metabolismo , Ésteres del Ácido Sulfúrico/química
9.
Biochimie ; 164: 83-94, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30910425

RESUMEN

DEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity. The current model is that they gain specificity and activity through interaction of their intrinsically disordered domains with specific RNA or proteins. DDX3 is a DEAD-box cellular helicase that has been involved in several steps of the HIV viral cycle, including transcription, RNA export to the cytoplasm and translation. In this study, we investigated DDX3 biochemical properties in the context of a biological substrate. DDX3 was overexpressed, purified and its enzymatic activities as well as its RNA binding properties were characterized using both model substrates and a biological substrate, HIV-1 gRNA. Biochemical characterization of DDX3 in the context of a biological substrate identifies HIV-1 gRNA as a rare example of specific substrate and unravels the extent of DDX3 ATPase activity. Analysis of DDX3 binding capacity indicates an unexpected dissociation between its binding capacity and its biochemical activity. We further demonstrate that interaction of DDX3 with HIV-1 gRNA relies both on specific RNA determinants and on the disordered N- and C-terminal regions of the protein. These findings shed a new light regarding the potentiality of DDX3 biochemical activity supporting its multiple cellular functions.


Asunto(s)
ARN Helicasas DEAD-box , Infecciones por VIH/virología , VIH-1/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/aislamiento & purificación , ARN Helicasas DEAD-box/fisiología , Humanos , Cinética , Unión Proteica , Especificidad por Sustrato
11.
Nucleic Acids Res ; 46(20): 11030-11047, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30215750

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The HTLV-1 basic leucine zipper protein (HBZ) is expressed in all cases of ATL and is directly associated with virus pathogenicity. The two isoforms of the HBZ protein are synthesized from antisense messenger RNAs (mRNAs) that are either spliced (sHBZ) or unspliced (usHBZ) versions of the HBZ transcript. The sHBZ and usHBZ mRNAs have entirely different 5'untranslated regions (5'UTR) and are differentially expressed in cells, with the sHBZ protein being more abundant. Here, we show that differential expression of the HBZ isoforms is regulated at the translational level. Translation initiation of the usHBZ mRNA relies on a cap-dependent mechanism, while the sHBZ mRNA uses internal initiation. Based on the structural data for the sHBZ 5'UTR generated by SHAPE in combination with 5' and 3' deletion mutants, the minimal region harboring IRES activity was mapped to the 5'end of the sHBZ mRNA. In addition, the sHBZ IRES recruited the 40S ribosomal subunit upstream of the initiation codon, and IRES activity was found to be dependent on the ribosomal protein eS25 and eIF5A.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , ARN Viral/genética , Proteínas de los Retroviridae/genética , Regiones no Traducidas 5'/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células COS , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de los Retroviridae/metabolismo
12.
ACS Synth Biol ; 7(6): 1565-1572, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29746092

RESUMEN

We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.


Asunto(s)
Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos de Timina/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Decitabina/química , Decitabina/metabolismo , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/genética , Nucleótidos de Desoxiguanina/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Microalgas/genética , Microorganismos Modificados Genéticamente , Tasa de Mutación , Péptido Hidrolasas/genética , Timidina Quinasa/genética , Timidilato Sintasa/genética , Nucleótidos de Timina/genética
13.
Nucleic Acids Res ; 45(22): 13016-13028, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29069411

RESUMEN

Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.


Asunto(s)
Sitios Internos de Entrada al Ribosoma/genética , Pestivirus/genética , Picornaviridae/genética , ARN Viral/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Virus de la Enfermedad de la Frontera/genética , Virus de la Enfermedad de la Frontera/fisiología , Línea Celular , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/fisiología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Conformación de Ácido Nucleico , Pestivirus/fisiología , Picornaviridae/fisiología , ARN Viral/química , ARN Viral/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Porcinos
15.
Nucleic Acids Res ; 45(12): 7382-7400, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28449096

RESUMEN

In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses.


Asunto(s)
VIH-1/genética , Sitios Internos de Entrada al Ribosoma , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Genes Reporteros , VIH-1/metabolismo , Humanos , Células Jurkat , Cinética , Luciferasas/genética , Luciferasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
16.
EMBO J ; 36(8): 981-994, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28167697

RESUMEN

Long non-coding RNAs (lncRNAs) play diverse roles in physiological and pathological processes. Several lncRNAs have been suggested to modulate gene expression by guiding chromatin-modifying complexes to specific sites in the genome. However, besides the example of Xist, clear-cut evidence demonstrating this novel mode of regulation remains sparse. Here, we focus on HOTAIR, a lncRNA that is overexpressed in several tumor types and previously proposed to play a key role in gene silencing through direct recruitment of Polycomb Repressive Complex 2 (PRC2) to defined genomic loci. Using genetic tools and a novel RNA-tethering system, we investigated the interplay between HOTAIR and PRC2 in gene silencing. Surprisingly, we observed that forced overexpression of HOTAIR in breast cancer cells leads to subtle transcriptomic changes that appear to be independent of PRC2. Mechanistically, we found that artificial tethering of HOTAIR to chromatin causes transcriptional repression, but that this effect does not require PRC2. Instead, PRC2 recruitment appears to be a consequence of gene silencing. We propose that PRC2 binding to RNA might serve functions other than chromatin targeting.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Proteínas de Neoplasias/metabolismo , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/biosíntesis , ARN Neoplásico/biosíntesis , Transcripción Genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Proteínas de Neoplasias/genética , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética
17.
FEBS J ; 283(10): 1880-901, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26972759

RESUMEN

The 5' untranslated region (UTR) of the full-length mRNA of the mouse mammary tumor virus (MMTV) harbors an internal ribosomal entry site (IRES). In this study, we show that the polypyrimidine tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the MMTV 5' UTR stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Results show that PTB1 and PTB4, but not PTB2, stimulate MMTV-IRES activity. PTB1 promotes MMTV-IRES-mediated initiation more strongly than PTB4. When expressed in combination, PTB1 further enhanced PTB4 stimulation of the MMTV-IRES, while PTB2 fully abrogates PTB4-induced stimulation. PTB1-induced stimulation of MMTV-IRES was not altered in the presence of PTB4 or PTB2. Mutational analysis reveals that stimulation of MMTV-IRES activity is abrogated when PTB1 is mutated either in RRM1/RRM2 or RRM3/RRM4. In contrast, a PTB4 RRM1/RRM2 mutant has reduced effect over MMTV-IRES activity, while stimulation of the MMTV-IRES activity is still observed when the PTB4 RRM3/RMM4 mutant is used. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity. In contrast, PTB2 acts as a negative modulator of PTB4-induced stimulation of MMTV-IRES. We conclude that PTB1 and PTB4 act as IRES trans-acting factors of the MMTV-IRES.


Asunto(s)
Regiones no Traducidas 5' , Virus del Tumor Mamario del Ratón/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Caperuzas de ARN , ARN Mensajero/genética , Sitios de Unión , Técnicas de Silenciamiento del Gen , Genes Virales , Células HEK293 , Humanos , Sitios Internos de Entrada al Ribosoma , Proteína de Unión al Tracto de Polipirimidina/genética
18.
Nucleic Acids Res ; 44(3): 1309-25, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26626152

RESUMEN

As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a 'kissing complex' between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation.


Asunto(s)
Hepacivirus/genética , Sitios Internos de Entrada al Ribosoma/genética , ARN Viral/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Sistema Libre de Células , Codón Iniciador/genética , Microscopía por Crioelectrón , Células HeLa , Hepacivirus/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Humanos , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Conejos , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
19.
Biochimie ; 114: 48-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25530261

RESUMEN

The accuracy of start codon selection is determined by the translation initiation process. In prokaryotes the initiation step on most mRNAs relies on recruitment of the small ribosomal subunit onto the initiation codon by base pairing between the mRNA and the 16S rRNA. Eukaryotes have evolved a complex molecular machinery involving at least 11 initiation factors, and mRNAs do not directly recruit the small ribosomal subunit. Instead the initiation complex is recruited to the 5' end of the mRNA through a complex protein network including eIF4E that interacts with the 5' cap structure and poly-A binding protein that interacts with the 3'end. However, some viral and cellular mRNAs are able to escape this pathway by internal recruitment of one or several components of the translation machinery. Here we review those eukaryotic mRNAs that have been reported to directly recruit the 40S ribosomal subunit internally. In the well characterized cases of viral IRESes, a specific RNA structure is involved in this process, and in addition to recruitment of the ribosome, the mRNA also manipulates the ribosome structure to stimulate the first translocation step. We also review recently described IRES/ribosome interactions in cases where the molecular mechanism leading to translation initiation has yet to be described. Finally we evaluate the possibility that mRNA may recruit the 40S ribosomal subunit through base pairing with the 18S rRNA.


Asunto(s)
ARN Mensajero/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/fisiología , Animales , Sitios de Unión , Humanos , Biosíntesis de Proteínas , Transporte de ARN , ARN de Transferencia/fisiología
20.
RNA ; 20(11): 1803-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25246653

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus, the etiological agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). One of the key viral proteins that contributes to tumorigenesis is vFLIP, a viral homolog of the FLICE inhibitory protein. This KSHV protein interacts with the NFκB pathway to trigger the expression of antiapoptotic and proinflammatory genes and ultimately leads to tumor formation. The expression of vFLIP is regulated at the translational level by an internal ribosomal entry site (IRES) element. However, the precise mechanism by which ribosomes are recruited internally and the exact location of the IRES has remained elusive. Here we show that a 252-nt fragment directly upstream of vFLIP, within a coding region, directs translation. We have established its RNA structure and demonstrate that IRES activity requires the presence of eIF4A and an intact eIF4G. Furthermore, and unusually for an IRES, eIF4E is part of the complex assembled onto the vFLIP IRES to direct translation. These molecular interactions define a new paradigm for IRES-mediated translation.


Asunto(s)
Herpesvirus Humano 8/genética , ARN Viral/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sitios de Unión , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral/genética , Ribosomas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...