Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 12(12): 1945-1959, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691451

RESUMEN

Pharmacometric models were used to investigate the utility of biomarkers in predicting the efficacy (Crohn's Disease Activity Index [CDAI]) of brazikumab and provide a data-driven framework for precision therapy for Crohn's disease (CD). In a phase IIa trial in patients with moderate to severe CD, treatment with brazikumab, an anti-interleukin 23 monoclonal antibody, was associated with clinical improvement. Brazikumab treatment effect was determined to be dependent on the baseline IL-22 (BIL22) or baseline C-reactive protein (BCRP; predictive biomarkers), and placebo effect was found to be correlated with the baseline CDAI (a prognostic biomarker). A maximal total inhibition on CDAI input function of 50.6% and 42.4% was predicted for patients with extremely high BIL22 or BCRP, compared to a maximal total inhibition of 20.9% and 17.8% for patients with extremely low BIL22 or BCRP, respectively, which were mainly due to the placebo effect. We demonstrated that model-derived baseline biomarker levels that achieve 50% of maximum unbound systemic concentration of 22.8 pg/mL and 8.03 mg/L for BIL22 and BCRP as the cutoffs to select subpopulations can effectively identify high-response subgroup patients with improved separation of responders when compared to using the median values as the cutoff. This work exemplifies the utility of pharmacometrics to quantify biomarker-driven responses in biologic therapies and distinguish between predictive and prognostic biomarkers, complementing clinical efforts of identifying subpopulations with higher likelihood of response to brazikumab.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/tratamiento farmacológico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Pronóstico , Inducción de Remisión , Proteínas de Neoplasias/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Biomarcadores/metabolismo
2.
Clin Pharmacol Ther ; 114(6): 1323-1331, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696614

RESUMEN

Pegozafermin is a long-acting glycoPEGylated analog of fibroblast growth factor 21 (FGF21) in development for the treatment of nonalcoholic steatohepatitis (NASH) and severe hypertriglyceridemia. In a phase Ib/IIa placebo-controlled, double-blind, multiple ascending dose study in patients with NASH (NCT04048135), administration of pegozafermin resulted in clinically meaningful reductions in hepatic fat fraction (HFF), with a favorable safety and tolerability profile. We aimed to characterize the relationship between pegozafermin dosing, exposure and effects on HFF reduction. We used pharmacokinetic (PK) and pharmacodynamic (PD) modeling of data from the phase Ib/IIa study to identify model parameters and covariates affecting the exposure-response relationship. Clinical simulations were performed to help support dose selection for larger studies. Pegozafermin exposure was adequately described by a one compartment PK model, with one additional transit absorption compartment. PK/PD modeling demonstrated that HFF reduction was significantly related to pegozafermin exposure. HFF outcomes were correlated with average pegozafermin concentrations regardless of weekly dosing (q.w.) or dosing every 2 weeks (q2w). The significant PK/PD model covariates included baseline body weight, alanine aminotransferase level, and liver volume. Simulations showed that the 30 mg q.w. dose approximated the full PD effect; almost all patients would benefit from a greater than or equal to 30% HFF reduction, suggesting fibrosis regression. Furthermore, 44 mg q2w dosing (~22 mg q.w.) appeared to be an effective regimen for HFF reduction. Our modeling supports the feasibility of q.w. and q2w dosing for achieving favorable treatment outcomes in patients with NASH, and provides the rationale for dose selection for the phase IIb ENLIVEN study (NCT04929483).


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Peso Corporal , Relación Dosis-Respuesta a Droga
3.
Eur Respir J ; 62(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321622

RESUMEN

BACKGROUND: Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum CFU over 14 days, as the primary end-point for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from USD 7 million to USD 19.6 million on average, while >30% of drugs fail to progress to phase 3. Better utilising pre-clinical data to predict and prioritise the most likely drugs to succeed will thus help to accelerate drug development and reduce costs. We aim to predict clinical EBA using pre-clinical in vivo pharmacokinetic (PK)-pharmacodynamic (PD) data and a model-based translational pharmacology approach. METHODS AND FINDINGS: First, mouse PK, PD and clinical PK models were compiled. Second, mouse PK-PD models were built to derive an exposure-response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PK-PD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. CONCLUSION: This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.


Asunto(s)
Antituberculosos , Tuberculosis , Animales , Ratones , Antituberculosos/uso terapéutico , Antituberculosos/farmacocinética , Modelos Animales de Enfermedad , Tuberculosis/tratamiento farmacológico
4.
Antimicrob Agents Chemother ; 67(7): e0144822, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37358463

RESUMEN

Rifampicin-resistant tuberculosis (RR-TB) involves treatment with many drugs that can prolong the QT interval; this risk may increase when multiple QT-prolonging drugs are used together. We assessed QT interval prolongation in children with RR-TB receiving one or more QT-prolonging drugs. Data were obtained from two prospective observational studies in Cape Town, South Africa. Electrocardiograms were performed before and after drug administration of clofazimine (CFZ), levofloxacin (LFX), moxifloxacin (MFX), bedaquiline (BDQ), and delamanid. The change in Fridericia-corrected QT (QTcF) was modeled. Drug and other covariate effects were quantified. A total of 88 children with a median (2.5th-to-97.5th range) age of 3.9 (0.5 to 15.7) years were included, of whom 55 (62.5%) were under 5 years of age. A QTcF interval of >450 ms was observed in 7 patient-visits: regimens were CFZ+MFX (n = 3), CFZ+BDQ+LFX (n = 2), CFZ alone (n = 1), and MFX alone (n = 1). There were no events with a QTcF interval of >500 ms. In a multivariate analysis, CFZ+MFX was associated with a 13.0-ms increase in change in QTcF (P < 0.001) and in maximum QTcF (P = 0.0166) compared to those when other MFX- or LFX-based regimens were used. In conclusion, we found a low risk of QTcF interval prolongation in children with RR-TB who received at least one QT-prolonging drug. Greater increases in maximum QTcF and ΔQTcF were observed when MFX and CFZ were used together. Future studies characterizing exposure-QTcF responses in children will be helpful to ensure safety with higher doses if required for effective treatment of RR-TB.


Asunto(s)
Antituberculosos , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Niño , Preescolar , Adolescente , Antituberculosos/efectos adversos , Rifampin/uso terapéutico , Sudáfrica , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Clofazimina/uso terapéutico , Levofloxacino/uso terapéutico , Electrocardiografía
5.
Clin Infect Dis ; 76(11): 1903-1910, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36804834

RESUMEN

BACKGROUND: Safer, better, and shorter treatments for multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) are an urgent global health need. The phase 3 clinical trial Nix-TB (NCT02333799) tested a 6-month treatment of MDR and XDR-TB consisting of high-dose linezolid, bedaquiline, and pretomanid (BPaL). In this study, we investigate the relationship between the pharmacokinetic characteristics of the drugs, patient characteristics and efficacy endpoints from Nix-TB. METHODS: Pharmacokinetic data were collected at weeks 2, 8, and 16. Efficacy endpoints including treatment outcomes, time to stable culture conversion, and longitudinal time to positivity in the mycobacterial growth indicator tube assay were each characterized using nonlinear mixed-effects modeling. Relationships between patient, treatment pharmacokinetics, and disease characteristics and efficacy endpoints were evaluated. RESULTS: Data from 93 (85% of the total) participants were analyzed. Higher body mass index was associated with a lower incidence of unfavorable treatment outcomes. Median time to stable culture conversion was 3 months in patients with lower baseline burden compared with 4.5 months in patients with high baseline burden. Participants with minimal disease had steeper time to positivity trajectories compared with participants with high-risk phenotypes. No relationship between any drugs' pharmacokinetics (drug concentration or exposure metrics) and any efficacy outcomes was observed. CONCLUSIONS: We have successfully described efficacy endpoints of a BPaL regimen from the Nix-TB trial. Participants with high-risk phenotypes significantly delayed time to culture conversion and bacterial clearance. The lack of a relationship between pharmacokinetic exposures and pharmacodynamic biomarkers opens the possibility to use lower, safer doses, particularly for toxicity-prone linezolid. CLINICAL TRIALS REGISTRATION: NCT02333799.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Diarilquinolinas/uso terapéutico
6.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711493

RESUMEN

Background: Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum colony forming units (CFU) over 14 days, as the primary outcome for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from 7 to 19.6 million dollars on average, while more than 30% of drugs fail to progress to phase 3. Better utilizing preclinical data to predict and prioritize the most likely drugs to succeed will thus help accelerate drug development and reduce costs. We aim to predict clinical EBA using preclinical in vivo pharmacokinetic-pharmacodynamic (PKPD) data and a model-based translational pharmacology approach. Methods and Findings: First, mouse PK, PD and clinical PK models were compiled. Second, mouse PKPD models were built to derive an exposure response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PKPD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. Conclusion: This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.

7.
Clin Infect Dis ; 76(3): e580-e589, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36041016

RESUMEN

BACKGROUND: Tuberculosis (TB) Trials Consortium Study 31/AIDS Clinical Trials Group A5349, an international randomized open-label phase 3 noninferiority trial showed that a 4-month daily regimen substituting rifapentine for rifampin and moxifloxacin for ethambutol had noninferior efficacy and was safe for the treatment of drug-susceptible pulmonary TB (DS-PTB) compared with the standard 6-month regimen. We explored results among the prespecified subgroup of people with human immunodeficiency virus (HIV) (PWH). METHODS: PWH and CD4+ counts ≥100 cells/µL were eligible if they were receiving or about to initiate efavirenz-based antiretroviral therapy (ART). Primary endpoints of TB disease-free survival 12 months after randomization (efficacy) and ≥ grade 3 adverse events (AEs) on treatment (safety) were compared, using a 6.6% noninferiority margin for efficacy. Randomization was stratified by site, pulmonary cavitation, and HIV status. PWH were enrolled in a staged fashion to support cautious evaluation of drug-drug interactions between rifapentine and efavirenz. RESULTS: A total of 2516 participants from 13 countries in sub-Saharan Africa, Asia, and the Americas were enrolled. Among 194 (8%) microbiologically eligible PWH, the median CD4+ count was 344 cells/µL (interquartile range: 223-455). The rifapentine-moxifloxacin regimen was noninferior to control (absolute difference in unfavorable outcomes -7.4%; 95% confidence interval [CI] -20.8% to 6.0%); the rifapentine regimen was not noninferior to control (+7.5% [95% CI, -7.3% to +22.4%]). Fewer AEs were reported in rifapentine-based regimens (15%) than the control regimen (21%). CONCLUSIONS: In people with HIV-associated DS-PTB with CD4+ counts ≥100 cells/µL on efavirenz-based ART, the 4-month daily rifapentine-moxifloxacin regimen was noninferior to the 6-month control regimen and was safe. CLINICAL TRIALS REGISTRATION: NCT02410772.


Asunto(s)
Infecciones por VIH , Tuberculosis Pulmonar , Tuberculosis , Humanos , Rifampin/efectos adversos , Moxifloxacino/efectos adversos , Antituberculosos/efectos adversos , VIH , Isoniazida/uso terapéutico , Quimioterapia Combinada , Tuberculosis Pulmonar/complicaciones , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Tuberculosis/tratamiento farmacológico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico
8.
Antimicrob Agents Chemother ; 66(4): e0231021, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35311519

RESUMEN

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
9.
J Pharm Biomed Anal ; 212: 114664, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192991

RESUMEN

Droplet digital PCR is a particularly valuable tool for ratiometric assays because it provides simultaneous absolute quantification of two target sequences in a single assay. This manuscript addresses a challenge in establishing a new ratiometric droplet digital PCR assay for use in sputum, the rRNA synthesis ratio. In principle, the methods established to evaluate precision and determine the limit of quantification for a single measurand cannot be applied to a ratiometric assay. The precision of a ratio depends on precision in both the numerator and denominator. Here, we evaluated the MOVER approximated coefficient of variation as indicator of assay precision that does not require technical replicates. We estimated the MOVER approximated coefficient of variation in dilution series and routine assays and evaluated its agreement with the traditional coefficient of variation. We found that the MOVER approximated coefficient of variation was able to recapitulate the traditional coefficient of variation without the requirement for replicate assays. We also demonstrated that the MOVER approximated coefficient of variation threshold can be used to define the limit of quantification of the rRNA synthesis Ratio. In conclusion, the MOVER approximated coefficient of variation may be useful not only for the rRNA synthesis ratio but for other assays that measure ratios via droplet digital PCR.


Asunto(s)
Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos
10.
Transplant Cell Ther ; 28(4): 196-202, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35065280

RESUMEN

Intravenous busulfan is widely used as part of myeloablative conditioning regimens in children and young adults undergoing allogeneic hematopoietic cell transplantation (HCT). Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a serious clinical problem observed with busulfan-based conditioning HCT. The development of VOD/SOS may be associated with busulfan exposure. Getting more insight into the association between busulfan exposure and the development of VOD/SOS enables further optimization of dosing and treatment strategies. The objective of this study was to assess the association between the magnitude of busulfan exposure and the occurrence of VOD/SOS in children and young adults undergoing myeloablative conditioning with a busulfan-containing regimen before allogeneic HCT. In this observational study we included all patients who underwent allogeneic HCT with intravenous busulfan as part of the conditioning regimen at 15 pediatric transplantation centers between 2000 and 2015. The endpoint was the development of VOD/SOS. The magnitude of busulfan exposure was estimated using nonlinear mixed effect modeling and expressed as the maximal concentration (Cmax; day 1 and day 1 to 4 Cmax), cumulative area under the curve (AUC; day 1, highest 1-day AUC in 4 days, and 4-day cumulative AUC), cumulative time above a concentration of 300 µg/L, and clearance on day 1. A total of 88 out of 697 patients (12.6%) developed VOD/SOS. The number of alkylators in the conditioning regimen was a strong effect modifier; therefore we stratified the regression analysis for the number of alkylators. For patients receiving only busulfan as one alkylator (36.3%, n = 253), cumulative busulfan exposure (>78 mg × h/L) was associated with increased VOD/SOS risk (12.6% versus 4.7%; odds ratio [OR] = 2.95, 95% confidence interval [CI] 1.13 to 7.66). For individuals receiving busulfan with one or two additional alkylators (63.7%, n = 444), cumulative busulfan exposure (≤78 and >78 mg × h/L) did not further increase the risk of VOD/SOS (15.4% versus 15.2%; OR = 1.03, 95% CI 0.61 to 1.75). The effect of the magnitude of busulfan exposure on VOD/SOS risk in children and young adults undergoing HCT is dependent on the number of alkylators. In patients receiving busulfan as the only alkylator, higher cumulative busulfan exposure increased the risk of VOD/SOS, whereas in those receiving multiple alkylators, the magnitude of busulfan exposure did not further increase this risk.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedad Veno-Oclusiva Hepática , Administración Intravenosa , Busulfano/efectos adversos , Niño , Enfermedad Veno-Oclusiva Hepática/epidemiología , Humanos , Acondicionamiento Pretrasplante/efectos adversos , Adulto Joven
11.
Annu Rev Pharmacol Toxicol ; 62: 197-210, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34591605

RESUMEN

Imperfect medication adherence remains the biggest predictor of treatment failure for patients with tuberculosis. Missed doses during treatment lead to relapse, tuberculosis resistance, and further spread of disease. Understanding individual patient phenotypes, population pharmacokinetics, resistance development, drug distribution to tuberculosis lesions, and pharmacodynamics at the site of infection is necessary to fully measure the impact of adherence on patient outcomes. To decrease the impact of expected variabilityin drug intake on tuberculosis outcomes, an improvement in patient adherence and new forgiving regimens that protect against missed doses are needed. In this review, we summarize emerging technologies to improve medication adherence in clinical practice and provide suggestions on how digital adherence technologies can be incorporated in clinical trials and practice and the drug development pipeline that will lead to more forgiving regimens and benefit patients suffering from tuberculosis.


Asunto(s)
Desarrollo de Medicamentos , Cumplimiento de la Medicación , Humanos
12.
Nat Commun ; 12(1): 6714, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795281

RESUMEN

Intermittent preventive treatment (IPT) with dihydroartemisinin-piperaquine (DP) is highly protective against malaria in children, but is not standard in malaria-endemic countries. Optimal DP dosing regimens will maximize efficacy and reduce toxicity and resistance selection. We analyze piperaquine (PPQ) concentrations (n = 4573), malaria incidence data (n = 326), and P. falciparum drug resistance markers from a trial of children randomized to IPT with DP every 12 weeks (n = 184) or every 4 weeks (n = 96) from 2 to 24 months of age (NCT02163447). We use nonlinear mixed effects modeling to establish malaria protective PPQ levels and risk factors for suboptimal protection. Compared to DP every 12 weeks, DP every 4 weeks is associated with 95% protective efficacy (95% CI: 84-99%). A PPQ level of 15.4 ng/mL reduces the malaria hazard by 95%. Malnutrition reduces PPQ exposure. In simulations, we show that DP every 4 weeks is optimal across a range of transmission intensities, and age-based dosing improves malaria protection in young or malnourished children.


Asunto(s)
Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Quinolinas/uso terapéutico , Algoritmos , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/farmacocinética , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Incidencia , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Modelos Biológicos , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Plasmodium falciparum/fisiología , Embarazo , Complicaciones Parasitarias del Embarazo/metabolismo , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Uganda/epidemiología
13.
Antimicrob Agents Chemother ; 65(12): e0170521, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34606336

RESUMEN

Rifapentine has facilitated treatment shortening for latent tuberculosis infection (LTBI) in combination with isoniazid once weekly for 3 months (3HP) or daily for 1 month (1HP). Our objective was to determine the optimal rifapentine dose for a 6-week monotherapy regimen (6wP) and predict clinical efficacy. Rifapentine and isoniazid pharmacokinetics were simulated in mice and humans. Mouse lung CFU data were used to characterize exposure-response relationships of 1HP, 3HP, and 6wP and translated to predict clinical efficacy. A 600-mg daily dose for 6wP delivered greater cumulative rifapentine exposure than 1HP or 3HP. The maximum regimen effect (Emax) was 0.24 day-1. The regimen potencies, measured as the concentration at 50% of Emax (EC50), were estimated to be 2.12 mg/liter for 3HP, 3.72 mg/liter for 1HP, and 4.71 mg/liter for 6wP, suggesting that isoniazid contributes little to 1HP efficacy. Clinical translation predicted that 6wP reduces bacterial loads at a higher rate than 3HP and to a greater extent than 3HP and 1HP. 6wP (600 mg daily) is predicted to result in equal or better efficacy than 1HP and 3HP for LTBI treatment without the potential added toxicity of isoniazid. Results from ongoing and future clinical studies will be required to support these findings.


Asunto(s)
Isoniazida , Tuberculosis Latente , Animales , Antituberculosos/uso terapéutico , Quimioterapia Combinada , Isoniazida/uso terapéutico , Tuberculosis Latente/tratamiento farmacológico , Ratones , Rifampin/análogos & derivados
14.
Microbiol Spectr ; 9(2): e0048121, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34494858

RESUMEN

There is a critical need for improved pharmacodynamic markers for use in human tuberculosis (TB) drug trials. Pharmacodynamic monitoring in TB has conventionally used culture or molecular methods to enumerate the burden of Mycobacterium tuberculosis organisms in sputum. A recently proposed assay called the rRNA synthesis (RS) ratio measures a fundamentally novel property, how drugs impact ongoing bacterial rRNA synthesis. Here, we evaluated RS ratio as a potential pharmacodynamic monitoring tool by testing pretreatment sputa from 38 Ugandan adults with drug-susceptible pulmonary TB. We quantified the RS ratio in paired pretreatment sputa and evaluated the relationship between the RS ratio and microbiologic and molecular markers of M. tuberculosis burden. We found that the RS ratio was highly repeatable and reproducible in sputum samples. The RS ratio was independent of M. tuberculosis burden, confirming that it measures a distinct new property. In contrast, markers of M. tuberculosis burden were strongly associated with each other. These results indicate that the RS ratio is repeatable and reproducible and provides a distinct type of information from markers of M. tuberculosis burden. IMPORTANCE This study takes a major next step toward practical application of a novel pharmacodynamic marker that we believe will have transformative implications for tuberculosis. This article follows our recent report in Nature Communications that an assay called the rRNA synthesis (RS) ratio indicates the treatment-shortening of drugs and regimens. Distinct from traditional measures of bacterial burden, the RS ratio measures a fundamentally novel property, how drugs impact ongoing bacterial rRNA synthesis.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , ARN Bacteriano/genética , ARN Ribosómico/genética , Esputo/microbiología , Tuberculosis Pulmonar/microbiología , Adulto , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Mycobacterium tuberculosis/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Esputo/química , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/metabolismo
15.
Am J Respir Crit Care Med ; 204(11): 1317-1326, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375564

RESUMEN

Rationale: Standardized dosing of antitubercular drugs contributes to a substantial incidence of toxicities, inadequate treatment response, and relapse, in part due to variable drug concentrations achieved. SNPs in the NAT2 (N-acetyltransferase-2) gene explain the majority of interindividual pharmacokinetic variability of isoniazid (INH). However, an obstacle to implementing pharmacogenomic-guided dosing is the lack of a point-of-care assay. Objectives: To develop and test a NAT2 classification algorithm, validate its performance in predicting isoniazid clearance, and develop a prototype pharmacogenomic assay. Methods: We trained random forest models to predict NAT2 acetylation genotype from unphased SNP data using a global collection of 8,561 phased genomes. We enrolled 48 patients with pulmonary tuberculosis, performed sparse pharmacokinetic sampling, and tested the acetylator prediction algorithm accuracy against estimated INH clearance. We then developed a cartridge-based multiplex quantitative PCR assay on the GeneXpert platform and assessed its analytical sensitivity on whole blood samples from healthy individuals. Measurements and Main Results: With a 5-SNP model trained on two-thirds of the data (n = 5,738), out-of-sample acetylation genotype prediction accuracy on the remaining third (n = 2,823) was 100%. Among the 48 patients with tuberculosis, predicted acetylator types were 27 (56.2%) slow, 16 (33.3%) intermediate, and 5 (10.4%) rapid. INH clearance rates were lowest in predicted slow acetylators (median 14.5 L/h), moderate in intermediate acetylators (median 40.3 L/h), and highest in fast acetylators (median 53.0 L/h). The cartridge-based assay accurately detected all allele patterns directly from 25 µl of whole blood. Conclusions: An automated pharmacogenomic assay on a platform widely used globally for tuberculosis diagnosis could enable personalized dosing of INH.


Asunto(s)
Antituberculosos/farmacocinética , Arilamina N-Acetiltransferasa/genética , Isoniazida/farmacocinética , Pruebas de Farmacogenómica , Polimorfismo Genético/genética , Tuberculosis Pulmonar/genética , Algoritmos , Antituberculosos/administración & dosificación , Estudios de Cohortes , Genotipo , Humanos , Isoniazida/administración & dosificación , Reacción en Cadena de la Polimerasa Multiplex , Farmacogenética , Valor Predictivo de las Pruebas , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/metabolismo
17.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645551

RESUMEN

Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.


Asunto(s)
Imagen Molecular , Mycobacterium tuberculosis/metabolismo , Tuberculosis/diagnóstico por imagen , Tuberculosis/metabolismo , Animales , Biomarcadores/metabolismo , Humanos
18.
J Infect Dis ; 223(11): 1855-1864, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31993638

RESUMEN

BACKGROUND: Linezolid (LZD) is bactericidal against Mycobacterium tuberculosis, but it has treatment-limiting toxicities. A better understanding of exposure-response relationships governing LZD efficacy and toxicity will inform dosing strategies. Because in vitro monotherapy studies yielded conflicting results, we explored LZD pharmacokinetic/pharmacodynamic (PK/PD) relationships in vivo against actively and nonactively multiplying bacteria, including in combination with pretomanid. METHODS: Linezolid multidose pharmacokinetics were modeled in mice. Dose-fractionation studies were performed in acute (net bacterial growth) and chronic (no net growth) infection models. In acute models, LZD was administered alone or with bacteriostatic or bactericidal pretomanid doses. Correlations between PK/PD parameters and lung colony-forming units (CFUs) and complete blood counts were assessed. RESULTS: Overall, time above minimum inhibitory concentration (T>MIC) correlated best with CFU decline. However, in growth-constrained models (ie, chronic infection, coadministration with pretomanid 50 mg/kg per day), area under the concentration-time curve over MIC (AUC/MIC) had similar explanatory power. Red blood cell counts correlated strongly with LZD minimum concentration (Cmin). CONCLUSIONS: Although T>MIC was the most consistent correlate of efficacy, AUC/MIC was equally predictive when bacterial multiplication was constrained by host immunity or pretomanid. In effective combination regimens, administering the same total LZD dose less frequently may be equally effective and cause less Cmin-dependent toxicity.


Asunto(s)
Antibacterianos , Linezolid , Infección Persistente , Tuberculosis , Animales , Antibacterianos/farmacología , Antibacterianos/toxicidad , Área Bajo la Curva , Modelos Animales de Enfermedad , Linezolid/farmacología , Linezolid/toxicidad , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico
19.
Clin Infect Dis ; 72(6): 1067-1073, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32594142

RESUMEN

Clinical trials of pharmacologic treatments of coronavirus disease 2019 (COVID-19) are being rapidly designed and implemented in adults. Children are often not considered during development of novel treatments for infectious diseases until very late. Although children appear to have a lower risk compared with adults of severe COVID-19 disease, a substantial number of children globally will benefit from pharmacologic treatments. It will be reasonable to extrapolate efficacy of most treatments from adult trials to children. Pediatric trials should focus on characterizing a treatment's pharmacokinetics, optimal dose, and safety across the age spectrum. These trials should use an adaptive design to efficiently add or remove arms in what will be a rapidly evolving treatment landscape, and should involve a large number of sites across the globe in a collaborative effort to facilitate efficient implementation. All stakeholders must commit to equitable access to any effective, safe treatment for children everywhere.


Asunto(s)
COVID-19 , Adulto , Niño , Humanos , Proyectos de Investigación , SARS-CoV-2 , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...