Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2025): 20240589, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919064

RESUMEN

The goal of measuring conceptual processing in numerical cognition is distanced by the possibility that neural responses to symbolic numerals are influenced by physical stimulus confounds. Here, we targeted conceptual responses to parity (even versus odd), using electroencephalogram (EEG) frequency-tagging with a symmetry/asymmetry design. Arabic numerals (2-9) were presented at 7.5 Hz in 50 s sequences; odd and even numbers were alternated to target differential, 'asymmetry' responses to parity at 3.75 Hz (7.5 Hz/2). Parity responses were probed with four different stimulus sets, increasing in intra-numeral stimulus variability, and with two control conditions composed of non-conceptual numeral alternations. Significant asymmetry responses were found over the occipitotemporal cortex to all conditions, even for the arbitrary controls. The large physical-differences control condition elicited the largest response in the stimulus set with the lowest variability (one font). Only in the stimulus set with the highest variability (20 drawn, coloured exemplars/numeral) did the response to parity surpass both control conditions. These findings show that physical differences across small sets of Arabic numerals can strongly influence, and even account for, automatic brain responses. However, carefully designed control conditions and highly variable stimulus sets may be used towards identifying truly conceptual neural responses.


Asunto(s)
Cognición , Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Matemática , Estimulación Luminosa , Encéfalo/fisiología
2.
Cortex ; 173: 339-354, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479348

RESUMEN

Studies using frequency-tagging in electroencephalography (EEG) have dramatically increased in the past 10 years, in a variety of domains and populations. Here we used Fast Periodic Visual Stimulation (FPVS) combined with an oddball design to explore visual word recognition. Given the paradigm's high sensitivity, it is crucial for future basic research and clinical application to prove its robustness across variations of designs, stimulus types and tasks. This paradigm uses periodicity of brain responses to measure discrimination between two experimentally defined categories of stimuli presented periodically. EEG was recorded in 22 adults who viewed words inserted every 5 stimuli (at 2 Hz) within base stimuli presented at 10 Hz. Using two discrimination levels (deviant words among nonwords or pseudowords), we assessed the impact of relative frequency of item repetition (set size or item repetition controlled for deviant versus base stimuli), and of the orthogonal task (focused or deployed spatial attention). Word-selective occipito-temporal responses were robust at the individual level (significant in 95% of participants), left-lateralized, larger for the prelexical (nonwords) than lexical (pseudowords) contrast, and stronger with a deployed spatial attention task as compared to the typically used focused task. Importantly, amplitudes were not affected by item repetition. These results help understanding the factors influencing word-selective EEG responses and support the validity of FPVS-EEG oddball paradigms, as they confirm that word-selective responses are linguistic. Second, they show its robustness against design-related factors that could induce statistical (ir)regularities in item rate. They also confirm its high individual sensitivity and demonstrate how it can be optimized, using a deployed rather than focused attention task, to measure implicit word recognition processes in typical and atypical populations.


Asunto(s)
Encéfalo , Electroencefalografía , Adulto , Humanos , Estimulación Luminosa/métodos , Encéfalo/fisiología , Atención , Lingüística
3.
Dev Sci ; 27(2): e13452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37800410

RESUMEN

Adults shift their attention to the right or to the left along a spatial continuum when solving additions and subtractions, respectively. Studies suggest that these shifts not only support the exact computation of the results but also anticipatively narrow down the range of plausible answers when processing the operands. However, little is known on when and how these attentional shifts arise in childhood during the acquisition of arithmetic. Here, an eye-tracker with high spatio-temporal resolution was used to measure spontaneous eye movements, used as a proxy for attentional shifts, while children of 2nd (8 y-o; N = 50) and 4th (10 y-o; N = 48) Grade solved simple additions (e.g., 4+3) and subtractions (e.g., 3-2). Gaze patterns revealed horizontal and vertical attentional shifts in both groups. Critically, horizontal eye movements were observed in 4th Graders as soon as the first operand and the operator were presented and thus before the beginning of the exact computation. In 2nd Graders, attentional shifts were only observed after the presentation of the second operand just before the response was made. This demonstrates that spatial attention is recruited when children solve arithmetic problems, even in the early stages of learning mathematics. The time course of these attentional shifts suggests that with practice in arithmetic children start to use spatial attention to anticipatively guide the search for the answer and facilitate the implementation of solving procedures. RESEARCH HIGHLIGHTS: Additions and subtractions are associated to right and left attentional shifts in adults, but it is unknown when these mechanisms arise in childhood. Children of 8-10 years old solved single-digit additions and subtractions while looking at a blank screen. Eye movements showed that children of 8 years old already show spatial biases possibly to represent the response when knowing both operands. Children of 10 years old shift attention before knowing the second operand to anticipatively guide the search for plausible answers.


Asunto(s)
Movimientos Oculares , Solución de Problemas , Adulto , Niño , Humanos , Solución de Problemas/fisiología , Aprendizaje , Movimiento , Matemática , Tiempo de Reacción/fisiología
4.
J Exp Psychol Gen ; 153(3): 706-719, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127554

RESUMEN

Bilinguals' exact number representations result from associations between language-independent Indo-Arabic digits ("5"), two verbal codes ("fünf" and "cinq") and a common, largely overlapping semantic representation. To compare the lexical and semantic access to number representations between two languages, we recruited a sample of balanced highly proficient German-French adult bilinguals. At school, those bilinguals learned mathematics in German for 6 years (LM1) and then switched to French (LM2) in 7th grade (12 years old) until 13th grade. After the brief presentation of primes (51 ms) consisting of Indo-Arabic digits or number words in German or French, an Indo-Arabic digits target had to be read in either German or French in an online study. Stimuli were numbers from 1 to 9, and we varied the absolute distance between primes and targets from 0 (i.e., 1-1) to 3 (1-4; as in Reynvoet et al., 2002). The priming distance effect (PDE) was used to measure the strength of numerical semantic association. We find comparable PDEs with Indo-Arabic digits and German number word primes, independently from the target naming language. However, we did not find a clear PDE with French number word primes, neither when naming targets in German, nor in French. The weaker PDE from LM2 compared to LM1 primes is interpreted as a weaker lexico-semantic association of LM2 number words. These results indicate a critical role of the LM1 and further emphasize the role of language in processing numbers. They might have important implications for designing bilingual school curricula. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Multilingüismo , Semántica , Adulto , Humanos , Niño , Tiempo de Reacción , Lenguaje , Matemática
5.
Front Psychol ; 14: 1252239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928578

RESUMEN

Introduction: Understanding brain functioning and intellectual giftedness can be challenging and give rise to various misconceptions. Nonetheless, there seems to be a widespread fascination and appetite for these subjects among the lay public and diverse professionals. The present study is the first to investigate general knowledge about the brain, neuromyths and knowledge about giftedness in a highly multilingual and educated country. Methods: Starting from and extending two seminal studies on neuromyths, several novel statements on intellectual giftedness have been included in order to explore knowledge and misconceptions concerning giftedness. Our sample (N = 200) was composed of Luxembourgish education professionals, including students in educational science and cognitive psychology, thus allowing to analyze responses in general and according to training and professional profiles. Specifically, Group 1 consisted of teachers and futures teachers (n = 152). Group 2 consisted of other education professionals and psychology students (n = 48). Results: Despite the size and the unbalanced distribution of the sample, our findings indicate a good level of general knowledge about the brain and learning (71.3% of correct responses in average) which does, however, not preclude the presence of the typically observed original neuromyths. Thus, we replicate the classical finding that misconceptions on Learning Styles (70% of error rate) and the Multiple Intelligence Theory (71.5% of error rate) are the most represented, both in (future and in-service) teachers and other education professionals. Moreover, the present sample also revealed a high presence of misconceptions on intellectual giftedness. Discussion: Limitations and future directions are discussed.

6.
PLoS One ; 18(9): e0292291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37773948

RESUMEN

Recent evidence suggests that spatial language in preschool positively affects the development of verbal number skills, as indexed by aggregated performances on counting and number naming tasks. We firstly aimed to specify whether spatial language (the knowledge of locative prepositions) significantly relates to both of these measures. In addition, we assessed whether the predictive value of spatial language extends beyond verbal number skills to numerical subdomains without explicit verbal component, such as number writing, symbolic magnitude classifications, ordinal judgments and numerosity comparisons. To determine the unique contributions of spatial language to these numerical skills, we controlled in our regression analyses for intrinsic and extrinsic spatial abilities, phonological awareness as well as age, socioeconomic status and home language. With respect to verbal number skills, it appeared that spatial language uniquely predicted forward and backward counting but not number naming, which was significantly affected only by phonological awareness. Regarding numerical tasks that do not contain explicit verbal components, spatial language did not relate to number writing or numerosity comparisons. Conversely, it explained unique variance in symbolic magnitude classifications and was the only predictor of ordinal judgments. These findings thus highlight the importance of spatial language for early numerical development beyond verbal number skills and suggest that the knowledge of spatial terms is especially relevant for processing cardinal and ordinal relations between symbolic numbers. Promoting spatial language in preschool might thus be an interesting avenue for fostering the acquisition of these symbolic numerical skills prior to formal schooling.


Asunto(s)
Lenguaje , Navegación Espacial , Concienciación , Juicio , Instituciones Académicas
7.
PLoS One ; 18(7): e0288224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37428745

RESUMEN

In making sense of the environment, we implicitly learn to associate stimulus attributes that frequently occur together. Is such learning favored for categories over individual items? Here, we introduce a novel paradigm for directly comparing category- to item-level learning. In a category-level experiment, even numbers (2,4,6,8) had a high-probability of appearing in blue, and odd numbers (3,5,7,9) in yellow. Associative learning was measured by the relative performance on trials with low-probability (p = .09) to high-probability (p = .91) number colors. There was strong evidence for associative learning: low-probability performance was impaired (40ms RT increase and 8.3% accuracy decrease relative to high-probability). This was not the case in an item-level experiment with a different group of participants, in which high-probability colors were non-categorically assigned (blue: 2,3,6,7; yellow: 4,5,8,9; 9ms RT increase and 1.5% accuracy increase). The categorical advantage was upheld in an explicit color association report (83% accuracy vs. 43% at the item-level). These results support a conceptual view of perception and suggest empirical bases of categorical, not item-level, color labeling of learning materials.


Asunto(s)
Percepción de Color , Aprendizaje , Humanos , Condicionamiento Clásico , Tiempo de Reacción
8.
PLoS One ; 17(8): e0273391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037234

RESUMEN

Number transcoding is the cognitive task of converting between different numerical codes (i.e. visual "42", verbal "forty-two"). Visual symbolic to verbal transcoding and vice versa strongly relies on language proficiency. We evaluated transcoding of German-French bilinguals from Luxembourg in 5th, 8th, 11th graders and adults. In the Luxembourgish educational system, children acquire mathematics in German (LM1) until the 7th grade, and then the language of learning mathematic switches to French (LM2). French `70s `80s `90s are less transparent than `30s `40s `50s numbers, since they have a base-20 structure, which is not the case in German. Transcoding was evaluated with a reading aloud and a verbal-visual number matching task. Results of both tasks show a cognitive cost for transcoding numbers having a base-20 structure (i.e. `70s, `80s and `90s), such that response times were slower in all age groups. Furthermore, considering only base-10 numbers (i.e. `30s `40s `50s), it appeared that transcoding in LM2 (French) also entailed a cost. While participants across age groups tended to read numbers slower in LM2, this effect was limited to the youngest age group in the matching task. In addition, participants made more errors when reading LM2 numbers. In conclusion, we observed an age-independent language effect with numbers having a base-20 structure in French, reflecting their reduced transparency with respect to the decimal system. Moreover, we find an effect of language of math acquisition such that transcoding is less well mastered in LM2. This effect tended to persist until adulthood in the reading aloud task, while in the matching task performance both languages become similar in older adolescents and young adults. This study supports the link between numbers and language, especially highlighting the impact of language on reading numbers aloud from childhood to adulthood.


Asunto(s)
Lenguaje , Lectura , Adolescente , Adulto , Niño , Humanos , Aprendizaje , Luxemburgo , Matemática , Adulto Joven
9.
PLoS One ; 17(8): e0273225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35984811

RESUMEN

According to the Argumentative Theory, human reasoning has an argumentative function, which consists of devising and evaluating arguments for and against various claims. It is however unclear how humans handle conflicting claims they face in everyday life (i.e., "Bob is telling me that Alice is at the library" vs. "Charles is telling me that Alice is at home"). We here investigate human argumentative reasoning in the light of Formal Argumentation, a research field that develops formal methods to give a normative account of argumentation and reasoning about conflicting information. In Formal Argumentation, multiple argumentation semantics that allow selecting sets of jointly acceptable arguments have been proposed. Nonetheless, it is unclear which of these semantics predicts best how humans evaluate the acceptability of conflicting arguments. We conducted an empirical study in which 130 young adults judged natural language arguments. We instructed them to draw the attack relation between the given arguments and to evaluate the acceptability of each of these arguments. Our results show that human judgments on the existence and directionality of attacks between the arguments conform to theoretical predictions from Formal Argumentation. We further found out that some less well-known argumentation semantics predicted human evaluation better than the most well-known semantics. These findings support the cognitive plausibility of variants of Formal Argumentation and bring new insights into reasoning about conflicting information.


Asunto(s)
Juicio , Solución de Problemas , Disentimientos y Disputas , Investigación Empírica , Humanos , Semántica , Adulto Joven
10.
Acta Psychol (Amst) ; 221: 103456, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34875445

RESUMEN

Achievement in mathematics has been shown to partially depend on verbal skills. In multilingual educational settings, varying language proficiencies might therefore contribute to differences in mathematics achievement. We explored the relationship between mathematics achievement and language competency in terms of home language and instruction language proficiency in the highly multilingual society of Luxembourg. We focussed on third graders' linguistic and mathematical achievement and used data from the national school monitoring program from two consecutive years to assess the influence of children's language profiles on reading comprehension in German (the instruction language) and mathematics performance. Results were similar for both cohorts. Regression analysis indicated that German reading comprehension was a significant predictor of mathematics achievement when accounting for both home language group and socioeconomic status. Moreover, mediation analysis showed that lower mathematics achievement of students with a home language that is very different from the instruction language relative to the Luxembourgish reference group were significantly mediated by achievement in German reading comprehension. These findings show that differences in mathematics achievement between speakers of a home language that is similar to the instruction language and speakers of distant home languages can be explained by their underachievement in reading comprehension in the instruction language. Possible explanations for varying performance patterns between language groups and solutions are being discussed.


Asunto(s)
Comprensión , Lectura , Logro , Niño , Humanos , Lenguaje , Matemática
11.
Sci Rep ; 11(1): 21405, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725370

RESUMEN

How humans integrate and abstract numerical information across different formats is one of the most debated questions in human cognition. We addressed the neuronal signatures of the numerical integration using an EEG technique tagged at the frequency of visual stimulation. In an oddball design, participants were stimulated with standard sequences of numbers (< 5) depicted in single (digits, dots, number words) or mixed notation (dots-digits, number words-dots, digits-number words), presented at 10 Hz. Periodically, a deviant stimulus (> 5) was inserted at 1.25 Hz. We observed significant oddball amplitudes for all single notations, showing for the first time using this EEG technique, that the magnitude information is spontaneously and unintentionally abstracted, irrespectively of the numerical format. Significant amplitudes were also observed for digits-number words and number words-dots, but not for digits-dots, suggesting an automatic integration across some numerical formats. These results imply that direct and indirect neuro-cognitive links exist across the different numerical formats.


Asunto(s)
Formación de Concepto , Electroencefalografía/métodos , Matemática , Reconocimiento Visual de Modelos/fisiología , Semántica , Adolescente , Adulto , Atención/fisiología , Cognición , Femenino , Humanos , Masculino , Modelos Estadísticos , Neurociencias , Estimulación Luminosa , Solución de Problemas , Psicología , Psicofísica , Aprendizaje Verbal , Adulto Joven
12.
Neuroscience ; 472: 138-156, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34333061

RESUMEN

Establishing consistent relationships between neural activity and behavior is a challenge in human cognitive neuroscience research. We addressed this issue using variable time constraints in an oddball frequency-sweep design for visual discrimination of complex images (face exemplars). Sixteen participants viewed sequences of ascending presentation durations, from 25 to 333 ms (40-3 Hz stimulation rate) while their electroencephalogram (EEG) was recorded. Throughout each sequence, the same unfamiliar face picture was repeated with variable size and luminance changes while different unfamiliar facial identities appeared every 1 s (1 Hz). A neural face individuation response, tagged at 1 Hz and its unique harmonics, emerged over the occipito-temporal cortex at 50 ms stimulus duration (25-100 ms across individuals), with an optimal response reached at 170 ms stimulus duration. In a subsequent experiment, identity changes appeared non-periodically within fixed-frequency sequences while the same participants performed an explicit face individuation task. The behavioral face individuation response also emerged at 50 ms presentation time, and behavioral accuracy correlated with individual participants' neural response amplitude in a weighted middle stimulus duration range (50-125 ms). Moreover, the latency of the neural response peaking between 180 and 200 ms correlated strongly with individuals' behavioral accuracy in this middle duration range, as measured independently. These observations point to the minimal (50 ms) and optimal (170 ms) stimulus durations for human face individuation and provide novel evidence that inter-individual differences in the magnitude and latency of early, high-level neural responses are predictive of behavioral differences in performance at this function.


Asunto(s)
Reconocimiento Facial , Discriminación en Psicología , Electroencefalografía , Cara , Humanos , Reconocimiento Visual de Modelos , Estimulación Luminosa
13.
J Cogn Neurosci ; 33(11): 2372-2393, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34272961

RESUMEN

In the approach of frequency tagging, stimuli that are presented periodically generate periodic responses of the brain. Following a transformation into the frequency domain, the brain's response is often evident at the frequency of stimulation, F, and its higher harmonics (2F, 3F, etc.). This approach is increasingly used in neuroscience, as it affords objective measures to characterize brain function. However, whether these specific harmonic frequency responses should be combined for analysis-and if so, how-remains an outstanding issue. In most studies, higher harmonic responses have not been described or were described only individually; in other studies, harmonics have been combined with various approaches, for example, averaging and root-mean-square summation. A rationale for these approaches in the context of frequency-based analysis principles and an understanding of how they relate to the brain's response amplitudes in the time domain have been missing. Here, with these elements addressed, the summation of (baseline-corrected) harmonic amplitude is recommended.


Asunto(s)
Encéfalo , Humanos , Tiempo de Reacción
14.
Neuropsychologia ; 157: 107874, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33930386

RESUMEN

Over the course of development, children must learn to map a non-symbolic representation of magnitude to a more precise symbolic system. There is solid evidence that finger and dot representations can facilitate or even predict the acquisition of this mapping skill. While several behavioral studies demonstrated that canonical representations of fingers and dots automatically activate number semantics, no study so far has investigated their cerebral basis. To examine these questions, 10-year-old children were presented a behavioral naming task and a Fast Periodic Visual Stimulation EEG paradigm. In the behavioral task, children had to name as fast and as accurately as possible the numbers of dots and fingers presented in canonical and non-canonical configurations. In the EEG experiment, one category of stimuli (e.g., canonical representation of fingers or dots) was periodically inserted (1/5) in streams of another category (e.g., non-canonical representation of fingers or dots) presented at a fast rate (4 Hz). Results demonstrated an automatic access to number semantics and bilateral categorical responses at 4 Hz/5 for canonical representations of fingers and dots. Some differences between finger and dot configuration's processing were nevertheless observed and are discussed in light of an effortful-automatic continuum hypothesis.


Asunto(s)
Dedos , Semántica , Niño , Electroencefalografía , Humanos , Estimulación Luminosa
15.
Dev Sci ; 24(1): e12999, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32452594

RESUMEN

The developmental course of neural tuning to visual letter strings is unclear. Here we tested 39 children longitudinally, at the beginning of grade 1 (6.45 ± 0.33 years old) and 1 year after, with fast periodic visual stimulation in electroencephalography to assess the evolution of selective neural responses to letter strings and their relationship with emerging reading abilities. At both grades, frequency-tagged letter strings were discriminated from pseudofont strings (i.e. letter-selectivity) over the left occipito-temporal cortex, with effects observed at the individual level in 62% of children. However, visual words were not discriminated from pseudowords (lexical access) at either grade. Following 1 year of schooling, letter-selective responses showed a specific increase in amplitude, a more complex pattern of harmonics, and were located more anteriorly over the left occipito-temporal cortex. Remarkably, at both grades, neural responses were highly significant at the individual level and correlated with individual reading scores. The amplitude increase in letter-selective responses between grades was not found for discrimination responses of familiar keyboard symbols from pseudosymbols, and was not related to a general increase in visual stimulation responses. These findings demonstrate a rapid onset of left hemispheric letter selectivity, with 1 year of reading instruction resulting in increased emerging reading abilities and a clear quantitative and qualitative evolution within left hemispheric neural circuits for reading.


Asunto(s)
Mapeo Encefálico , Lectura , Niño , Electroencefalografía , Estudios de Seguimiento , Humanos , Reconocimiento Visual de Modelos , Estimulación Luminosa , Lóbulo Temporal
16.
J Exp Child Psychol ; 201: 104971, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916593

RESUMEN

Children's verbal number skills set the foundation for mathematical development. Therefore, it is central to understand their cognitive origins. Evidence suggests that preschool children rely on visuospatial abilities when solving counting and number naming tasks despite their predominantly verbal nature. We aimed to replicate these findings when controlling for verbal abilities and sociodemographic factors. Moreover, we further characterized the relation between visuospatial abilities and verbal number skills by examining the role of spatial language. Because spatial language encompasses the verbalization of spatial thinking, it is a key candidate supporting the interplay between visuospatial and verbal processes. Regression analysis indicated that both visuospatial and verbal abilities, as assessed by spatial perception and phonological awareness, respectively, uniquely predicted verbal number skills when controlling for their respective influences, age, gender, and socioeconomic status. This confirms the spatial grounding of verbal number skills. Interestingly, adding spatial language to the model abolished the predictive effects of visuospatial and verbal abilities, whose influences were completely mediated by spatial language. Verbal number skills thus concurrently depend on specifically those visuospatial and verbal processes jointly indexed through spatial language. The knowledge of spatial terms might promote verbal number skills by advancing the understanding of the spatial relations between numerical magnitudes on the mental number line. Promoting spatial language in preschool thus might be a successful avenue for stimulating mathematical development prior to formal schooling. Moreover, measures of spatial language could become an additional promising tool to screen preschool children for potential upcoming difficulties with mathematical learning.


Asunto(s)
Aptitud , Lenguaje , Matemática , Percepción Espacial , Conducta Verbal , Niño , Preescolar , Femenino , Humanos , Masculino
17.
Sci Rep ; 10(1): 22254, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335293

RESUMEN

Arabic digits (1-9) are everywhere in our daily lives. These symbols convey various semantic information, and numerate adults can easily extract from them several numerical features such as magnitude and parity. Nonetheless, since most studies used active processing tasks to assess these properties, it remains unclear whether and to what degree the access to magnitude and especially to parity is automatic. Here we investigated with EEG whether spontaneous processing of magnitude or parity can be recorded in a frequency-tagging approach, in which participants are passively stimulated by fast visual sequences of Arabic digits. We assessed automatic magnitude processing by presenting a stream of frequent small digit numbers mixed with deviant large digits (and the reverse) with a sinusoidal contrast modulation at the frequency of 10 Hz. We used the same paradigm to investigate numerical parity processing, contrasting odd digits to even digits. We found significant brain responses at the frequency of the fluctuating change and its harmonics, recorded on electrodes encompassing right occipitoparietal regions, in both conditions. Our findings indicate that both magnitude and parity are spontaneously and unintentionally extracted from Arabic digits, which supports that they are salient semantic features deeply associated to digit symbols in long-term memory.

18.
Sci Rep ; 10(1): 18376, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110202

RESUMEN

Humans have a Number Sense that enables them to represent and manipulate numerical quantities. Behavioral data suggest that the acuity of numerical discrimination is predictively associated with math ability-especially in children-but some authors argued that its assessment is problematic. In the present study, we used frequency-tagged electroencephalography to objectively measure spontaneous numerical discrimination during passive viewing of dot or picture arrays in healthy adults. During 1-min sequences, we introduced periodic numerosity changes and we progressively increased the magnitude of such changes every ten seconds. We found significant brain synchronization to the periodic numerosity changes from the 1.2 ratio over medial occipital regions, and amplitude strength increased with the numerical ratio. Brain responses were reliable across both stimulus formats. Interestingly, electrophysiological responses also mirrored performances on a number comparison task and seemed to be linked to math fluency. In sum, we present a neural marker of numerical acuity that is passively evaluated in short sequences, independent of stimulus format and that reflects behavioural performances on explicit number comparison tasks.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Adulto , Humanos , Conceptos Matemáticos , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa , Análisis y Desempeño de Tareas
19.
Front Psychol ; 11: 871, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508712

RESUMEN

Visual-spatial abilities (VSA) are considered a building block of early numerical development. They are intuitively acquired in early childhood and differentiate in further development. However, when children enter school, there already are considerable individual differences in children's visual-spatial and numerical abilities. To better understand this diversity, it is necessary to empirically evaluate the development as well as the latent structure of early VSA as proposed by the 2 by 2 taxonomy of Newcombe and Shipley (2015). In the present study, we report on a tablet-based assessment of VSA using the digital application (app) MaGrid in kindergarten children aged 4-6 years. We investigated whether the visual-spatial tasks implemented in MaGrid are sensitive to replicate previously observed age differences in VSA and thus a hierarchical development of VSA. Additionally, we evaluated whether the selected tasks conform to the taxonomy of VSA by Newcombe and Shipley (2015) applying a confirmatory factor analysis (CFA) approach. Our results indicated that the hierarchical development of VSA can be measured using MaGrid. Furthermore, the CFA substantiated the hypothesized factor structure of VSA in line with the dimensions proposed in the taxonomy of Newcombe and Shipley (2015). Taken together, the present results advance our knowledge to the (hierarchical) development as well as the latent structure of early VSA in kindergarten children.

20.
Proc Natl Acad Sci U S A ; 117(11): 5726-5732, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123113

RESUMEN

The ability to handle approximate quantities, or number sense, has been recurrently linked to mathematical skills, although the nature of the mechanism allowing to extract numerical information (i.e., numerosity) from environmental stimuli is still debated. A set of objects is indeed not only characterized by its numerosity but also by other features, such as the summed area occupied by the elements, which often covary with numerosity. These intrinsic relations between numerosity and nonnumerical magnitudes led some authors to argue that numerosity is not independently processed but extracted through a weighting of continuous magnitudes. This view cannot be properly tested through classic behavioral and neuroimaging approaches due to these intrinsic correlations. The current study used a frequency-tagging EEG approach to separately measure responses to numerosity as well as to continuous magnitudes. We recorded occipital responses to numerosity, total area, and convex hull changes but not to density and dot size. We additionally applied a model predicting primary visual cortex responses to the set of stimuli. The model output was closely aligned with our electrophysiological data, since it predicted discrimination only for numerosity, total area, and convex hull. Our findings thus demonstrate that numerosity can be independently processed at an early stage in the visual cortex, even when completely isolated from other magnitude changes. The similar implicit discrimination for numerosity as for some continuous magnitudes, which correspond to basic visual percepts, shows that both can be extracted independently, hence substantiating the nature of numerosity as a primary feature of the visual scene.


Asunto(s)
Electroencefalografía/métodos , Matemática , Corteza Visual/fisiología , Adulto , Cognición , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...