Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746206

RESUMEN

While there has been progress in the de novo design of small globular miniproteins (50-65 residues) to bind to primarily concave regions of a target protein surface, computational design of minibinders to convex binding sites remains an outstanding challenge due to low level of overall shape complementarity. Here, we describe a general approach to generate computationally designed proteins which bind to convex target sites that employ geometrically matching concave scaffolds. We used this approach to design proteins binding to TGFßRII, CTLA-4 and PD-L1 which following experimental optimization have low nanomolar to picomolar affinities and potent biological activity. Co-crystal structures of the TGFßRII and CTLA-4 binders in complex with the receptors are in close agreement with the design models. Our approach provides a general route to generating very high affinity binders to convex protein target sites.

2.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37781607

RESUMEN

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.

3.
Nature ; 617(7962): 711-716, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37225882

RESUMEN

Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.


Asunto(s)
Antígenos CD20 , Células , ADN , Microscopía Fluorescente , Disciplinas de las Ciencias Biológicas/instrumentación , Disciplinas de las Ciencias Biológicas/métodos , Disciplinas de las Ciencias Biológicas/normas , Inmunoterapia , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Código de Barras del ADN Taxonómico , ADN/análisis , ADN/química , Antígenos CD20/análisis , Antígenos CD20/química , Células/efectos de los fármacos , Células/metabolismo
4.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993355

RESUMEN

Growth factors and cytokines signal by binding to the extracellular domains of their receptors and drive association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affects signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo designed fibroblast growth-factor receptor (FGFR) binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and MAPK pathway activation. The high specificity of the designed agonists reveal distinct roles for two FGFR splice variants in driving endothelial and mesenchymal cell fates during early vascular development. The ability to incorporate receptor binding domains and repeat extensions in a modular fashion makes our designed scaffolds broadly useful for probing and manipulating cellular signaling pathways.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38259324

RESUMEN

Over 90% of the U.S. adult population suffers from tooth structure loss due to caries. Most of the mineralized tooth structure is composed of dentin, a material produced and mineralized by ectomesenchyme derived cells known as odontoblasts. Clinicians, scientists, and the general public share the desire to regenerate this missing tooth structure. To bioengineer missing dentin, increased understanding of human tooth development is required. Here we interrogate at the single cell level the signaling interactions that guide human odontoblast and ameloblast development and which determine incisor or molar tooth germ type identity. During human odontoblast development, computational analysis predicts that early FGF and BMP activation followed by later HH signaling is crucial. Application of this sci-RNA-seq analysis generates a differentiation protocol to produce mature hiPSC derived odontoblasts in vitro (iOB). Further, we elucidate the critical role of FGF signaling in odontoblast maturation and its biomineralization capacity using the de novo designed FGFR1/2c isoform specific minibinder scaffolded as a C6 oligomer that acts as a pathway agonist. We find that FGFR1c is upregulated in functional odontoblasts and specifically plays a crucial role in driving odontoblast maturity. Using computational tools, we show on a molecular level how human molar development is delayed compared to incisors. We reveal that enamel knot development is guided by FGF and WNT in incisors and BMP and ROBO in the molars, and that incisor and molar ameloblast development is guided by FGF, EGF and BMP signaling, with tooth type specific intensity of signaling interactions. Dental ectomesenchyme derived cells are the primary source of signaling ligands responsible for both enamel knot and ameloblast development.

6.
Nat Commun ; 13(1): 7152, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418347

RESUMEN

Single-molecule localization microscopy super-resolution methods rely on stochastic blinking/binding events, which often occur multiple times from each emitter over the course of data acquisition. Typically, the blinking/binding events from each emitter are treated as independent events, without an attempt to assign them to a particular emitter. Here, we describe a Bayesian method of inferring the positions of the tagged molecules by exploring the possible grouping and combination of localizations from multiple blinking/binding events. The results are position estimates of the tagged molecules that have improved localization precision and facilitate nanoscale structural insights. The Bayesian framework uses the localization precisions to learn the statistical distribution of the number of blinking/binding events per emitter and infer the number and position of emitters. We demonstrate the method on a range of synthetic data with various emitter densities, DNA origami constructs and biological structures using DNA-PAINT and dSTORM data. We show that under some experimental conditions it is possible to achieve sub-nanometer precision.


Asunto(s)
Aprendizaje , Solución de Problemas , Teorema de Bayes , Imagen Individual de Molécula
7.
Science ; 377(6604): 387-394, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862514

RESUMEN

The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, "constrained hallucination," optimizes sequences such that their predicted structures contain the desired functional site. The second approach, "inpainting," starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.


Asunto(s)
Aprendizaje Profundo , Ingeniería de Proteínas , Proteínas , Sitios de Unión , Catálisis , Unión Proteica , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/química
8.
Chembiochem ; 22(19): 2872-2879, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34286903

RESUMEN

Talin is a cell adhesion molecule that is indispensable for the development and function of multicellular organisms. Despite its central role for many cell biological processes, suitable methods to investigate the nanoscale organization of talin in its native environment are missing. Here, we overcome this limitation by combining single-molecule resolved PAINT (points accumulation in nanoscale topography) imaging with the IRIS (image reconstruction by integrating exchangeable single-molecule localization) approach, enabling the quantitative analysis of genetically unmodified talin molecules in cells. We demonstrate that a previously reported peptide can be utilized to specifically label the two major talin isoforms expressed in mammalian tissues with a localization precision of <10 nm. Our experiments show that the methodology performs equally well as state-of-the-art single-molecule localization techniques, and the first applications reveal a thus far undescribed cell adhesion structure in differentiating stem cells. Furthermore, we demonstrate the applicability of this peptide-PAINT technique to mouse tissues paving the way to single-protein imaging of endogenous talin proteins under physiologically relevant conditions.


Asunto(s)
Péptidos/metabolismo , Células Madre/metabolismo , Talina/metabolismo , Animales , Adhesión Celular , Ratones , Microscopía Fluorescente , Péptidos/química , Células Madre/química , Talina/química
9.
ACS Nano ; 15(7): 12161-12170, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34184536

RESUMEN

The precise spatial localization of proteins in situ by super-resolution microscopy (SRM) demands their targeted labeling. Positioning reporter molecules as close as possible to the target remains a challenge in primary cells or tissues from patients that cannot be easily genetically modified. Indirect immunolabeling introduces relatively large linkage errors, whereas site-specific and stoichiometric labeling of primary antibodies relies on elaborate chemistries. In this study, we developed a simple two-step protocol to site-specifically attach reporters such as fluorophores or DNA handles to several immunoglobulin G (IgG) antibodies from different animal species and benchmarked the performance of these conjugates for 3D STORM (stochastic optical reconstruction microscopy) and DNA-PAINT (point accumulation in nanoscale topography). Glutamine labeling was restricted to two sites per IgG and saturable by exploiting microbial transglutaminase after removal of N-linked glycans. Precision measurements of 3D microtubule labeling shell dimensions in cell lines and human platelets showed that linkage errors from primary and secondary antibodies did not add up. Monte Carlo simulations of a geometric microtubule-IgG model were in quantitative agreement with STORM results. The simulations revealed that the flexible hinge between Fab and Fc segments effectively randomized the direction of the secondary antibody, while the restricted binding orientation of the primary antibody's Fab fragment accounted for most of the systematic offset between the reporter and α-tubulin. DNA-PAINT surprisingly yielded larger linkage errors than STORM, indicating unphysiological conformations of DNA-labeled IgGs. In summary, our cost-effective protocol for generating well-characterized primary IgG conjugates offers an easy route to precise SRM measurements in arbitrary fixed samples.


Asunto(s)
ADN , Inmunoglobulina G , Animales , Humanos , Microscopía Fluorescente/métodos , ADN/química
10.
Nat Commun ; 12(1): 2510, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947854

RESUMEN

Cell-extracellular matrix sensing plays a crucial role in cellular behavior and leads to the formation of a macromolecular protein complex called the focal adhesion. Despite their importance in cellular decision making, relatively little is known about cell-matrix interactions and the intracellular transduction of an initial ligand-receptor binding event on the single-molecule level. Here, we combine cRGD-ligand-decorated DNA tension sensors with DNA-PAINT super-resolution microscopy to study the mechanical engagement of single integrin receptors and the downstream influence on actin bundling. We uncover that integrin receptor clustering is governed by a non-random organization with complexes spaced at 20-30 nm distances. The DNA-based tension sensor and analysis framework provide powerful tools to study a multitude of receptor-ligand interactions where forces are involved in ligand-receptor binding.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , ADN/metabolismo , Nanotecnología/métodos , Imagen Individual de Molécula/métodos , Actinas/química , Actinas/ultraestructura , Adhesión Celular , Análisis por Conglomerados , Citoesqueleto/ultraestructura , ADN/química , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Humanos , Ligandos , Unión Proteica , Imagen Individual de Molécula/instrumentación , Propiedades de Superficie , Talina/genética , Talina/metabolismo
11.
Chemphyschem ; 22(10): 911-914, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33720501

RESUMEN

Improving labeling probes for state-of-the-art super-resolution microscopy is becoming of major importance. However, there is currently a lack of tools to quantitatively evaluate probe performance regarding efficiency, precision, and achievable resolution in an unbiased yet modular fashion. Herein, we introduce designer DNA origami structures combined with DNA-PAINT to overcome this issue and evaluate labeling efficiency, precision, and quantification using antibodies and nanobodies as exemplary labeling probes. Whereas current assessment of binders is mostly qualitative, e. g. based on an expected staining pattern, we herein present a quantitative analysis platform of the antigen labeling efficiency and achievable resolution, allowing researchers to choose the best performing binder. The platform can furthermore be readily adapted for discovery and precise quantification of a large variety of additional labeling probes.


Asunto(s)
ADN/química , Nanoestructuras/química , Microscopía Fluorescente
12.
Nat Commun ; 12(1): 919, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568673

RESUMEN

Single-molecule localization microscopy (SMLM) enabling the investigation of individual proteins on molecular scales has revolutionized how biological processes are analysed in cells. However, a major limitation of imaging techniques reaching single-protein resolution is the incomplete and often unknown labeling and detection efficiency of the utilized molecular probes. As a result, fundamental processes such as complex formation of distinct molecular species cannot be reliably quantified. Here, we establish a super-resolution microscopy framework, called quantitative single-molecule colocalization analysis (qSMCL), which permits the identification of absolute molecular quantities and thus the investigation of molecular-scale processes inside cells. The method combines multiplexed single-protein resolution imaging, automated cluster detection, in silico data simulation procedures, and widely applicable experimental controls to determine absolute fractions and spatial coordinates of interacting species on a true molecular level, even in highly crowded subcellular structures. The first application of this framework allowed the identification of a long-sought ternary adhesion complex-consisting of talin, kindlin and active ß1-integrin-that specifically forms in cell-matrix adhesion sites. Together, the experiments demonstrate that qSMCL allows an absolute quantification of multiplexed SMLM data and thus should be useful for investigating molecular mechanisms underlying numerous processes in cells.


Asunto(s)
Proteínas del Citoesqueleto/química , Integrina beta1/química , Proteínas Musculares/química , Imagen Individual de Molécula/métodos , Talina/química , Animales , Adhesión Celular , Línea Celular , Humanos , Ratones , Imagen Individual de Molécula/instrumentación
13.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468643

RESUMEN

T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , ADN/inmunología , Complejo Mayor de Histocompatibilidad/genética , Receptores de Antígenos de Linfocitos T/química , Animales , Células Presentadoras de Antígenos/citología , Linfocitos T CD4-Positivos/citología , ADN/química , ADN/genética , Expresión Génica , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Activación de Linfocitos , Ratones , Conformación de Ácido Nucleico , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Cultivo Primario de Células , Unión Proteica , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Bazo/citología , Bazo/inmunología
14.
Nano Lett ; 21(3): 1213-1220, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33253583

RESUMEN

Inferring the organization of fluorescently labeled nanosized structures from single molecule localization microscopy (SMLM) data, typically obscured by stochastic noise and background, remains challenging. To overcome this, we developed a method to extract high-resolution ordered features from SMLM data that requires only a low fraction of targets to be localized with high precision. First, experimentally measured localizations are analyzed to produce relative position distributions (RPDs). Next, model RPDs are constructed using hypotheses of how the molecule is organized. Finally, a statistical comparison is used to select the most likely model. This approach allows pattern recognition at sub-1% detection efficiencies for target molecules, in large and heterogeneous samples and in 2D and 3D data sets. As a proof-of-concept, we infer ultrastructure of Nup107 within the nuclear pore, DNA origami structures, and α-actinin-2 within the cardiomyocyte Z-disc and assess the quality of images of centrioles to improve the averaged single-particle reconstruction.


Asunto(s)
ADN , Imagen Individual de Molécula
15.
Nanoscale ; 12(48): 24543, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306074

RESUMEN

Correction for 'Circumvention of common labelling artefacts using secondary nanobodies' by Shama Sograte-Idrissi et al., Nanoscale, 2020, 12, 10226-10239, DOI: 10.1039/D0NR00227E.

16.
Nanoscale ; 12(18): 10226-10239, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32356544

RESUMEN

A standard procedure to study cellular elements is via immunostaining followed by optical imaging. This methodology typically requires target-specific primary antibodies (1.Abs), which are revealed by secondary antibodies (2.Abs). Unfortunately, the antibody bivalency, polyclonality, and large size can result in a series of artifacts. Alternatively, small, monovalent probes, such as single-domain antibodies (nanobodies) have been suggested to minimize these limitations. The discovery and validation of nanobodies against specific targets are challenging, thus only a minimal amount of them are currently available. Here, we used STED, DNA-PAINT, and light-sheet microscopy, to demonstrate that secondary nanobodies (1) increase localization accuracy compared to 2.Abs; (2) allow direct pre-mixing with 1.Abs before staining, reducing experimental time, and enabling the use of multiple 1.Abs from the same species; (3) penetrate thick tissues more efficiently; and (4) avoid probe-induced clustering of target molecules observed with conventional 2.Abs in living or poorly fixed samples. Altogether, we show how secondary nanobodies are a valuable alternative to 2.Abs.


Asunto(s)
Artefactos , Inmunoensayo/métodos , Anticuerpos de Dominio Único/inmunología , Animales , Células COS , Chlorocebus aethiops , Cóclea/inervación , Cóclea/patología , ADN/química , Colorantes Fluorescentes/química , Ratones , Microscopía Confocal , Microtúbulos/inmunología , Anticuerpos de Dominio Único/química
17.
Sci Rep ; 9(1): 13791, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551452

RESUMEN

In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model.


Asunto(s)
Teorema de Bayes , Cadenas de Markov , Método de Montecarlo , Algoritmos , Humanos , Probabilidad , Incertidumbre
18.
Nat Commun ; 10(1): 4403, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562305

RESUMEN

Specialized epitope tags are widely used for detecting, manipulating or purifying proteins, but often their versatility is limited. Here, we introduce the ALFA-tag, a rationally designed epitope tag that serves a remarkably broad spectrum of applications in life sciences while outperforming established tags like the HA-, FLAG®- or myc-tag. The ALFA-tag forms a small and stable α-helix that is functional irrespective of its position on the target protein in prokaryotic and eukaryotic hosts. We characterize a nanobody (NbALFA) binding ALFA-tagged proteins from native or fixed specimen with low picomolar affinity. It is ideally suited for super-resolution microscopy, immunoprecipitations and Western blotting, and also allows in vivo detection of proteins. We show the crystal structure of the complex that enabled us to design a nanobody mutant (NbALFAPE) that permits efficient one-step purifications of native ALFA-tagged proteins, complexes and even entire living cells using peptide elution under physiological conditions.


Asunto(s)
Epítopos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/metabolismo , Células 3T3 , Animales , Células COS , Chlorocebus aethiops , Epítopos/química , Epítopos/genética , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Mutación , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética
19.
Angew Chem Int Ed Engl ; 58(37): 13004-13008, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31314157

RESUMEN

The nuclear pore complex (NPC) is one of the largest and most complex protein assemblies in the cell and, among other functions, serves as the gatekeeper of nucleocytoplasmic transport. Unraveling its molecular architecture and functioning has been an active research topic for decades with recent cryogenic electron microscopy and super-resolution studies advancing our understanding of the architecture of the NPC complex. However, the specific and direct visualization of single copies of NPC proteins is thus far elusive. Herein, we combine genetically-encoded self-labeling enzymes such as SNAP-tag and HaloTag with DNA-PAINT microscopy. We resolve single copies of nucleoporins in the human Y-complex in three dimensions with a precision of circa 3 nm, enabling studies of multicomponent complexes on the level of single proteins in cells using optical fluorescence microscopy.


Asunto(s)
ADN/química , Proteínas de Complejo Poro Nuclear/análisis , Imagen Individual de Molécula/métodos , Línea Celular , Humanos , Microscopía Fluorescente/métodos , Modelos Moleculares , Imagen Óptica/métodos
20.
Nature ; 567(7746): 113-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787442

RESUMEN

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/embriología , Microtúbulos/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Uniones Intercelulares/metabolismo , Interfase , Ventrículos Laterales/anatomía & histología , Glándulas Mamarias Animales/citología , Ratones , Tamaño de los Órganos , Organoides/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...