Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 102(2): 102394, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586295

RESUMEN

Preventing pathogens from entering and spreading on farms is the first step in reducing health problems. For this study a BiosEcurity Assessment Tool was developed to identify strengths and weaknesses in biosecurity on broiler farms, which was used as a starting point to formulate tailor-made health plans to improve broiler health and reduce antimicrobial use. Farms were divided into 3 separate areas according to associated biosecurity risk; high disease risk external areas (red zone), medium risk service areas (orange zone), and the clean and highly secure access-restricted green zone. In the Netherlands, Cyprus, and Greece, 13, 15, and 7 broiler houses were monitored for 4 production cycles (2 preintervention and 2 postintervention cycles). At the start of the study the BiosEcurity Assessment Tool assessment was performed and a health plan was made in consultation with the veterinarian. After the second cycle a start was made with the implementation of the health plan. Overall, the biosecurity level in the green and orange zones were significantly higher in the Netherlands compared to Greece and Cyprus, but there was no difference for the red zone or the transition zones between the countries. The interventions in the health plans were mostly directed towards those measures that could be implemented in the short term and with low costs in the green zone. In Cyprus a decrease in antimicrobial use was found postintervention. This was not the case in Greece and the Netherlands. In Cyprus and Greece footpad lesion improved after interventions were implemented, although this may have been an effect of season. In Dutch farms no improvement was detected, but both antimicrobial use and footpad lesions were lower at the start of the study compared to Cypriot and Greek farms. In conclusion, the BEAT shows to be a promising tool to assess biosecurity risks on broiler farms. The biosecurity assessment in combination with the farm specific health plans could contribute to antimicrobial reduction on broiler farms.


Asunto(s)
Antiinfecciosos , Bioaseguramiento , Animales , Granjas , Países Bajos , Chipre , Grecia , Pollos , Crianza de Animales Domésticos , Medición de Riesgo
2.
Pathogens ; 11(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35631070

RESUMEN

Highly pathogenic avian influenza viruses' (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI outbreaks (cases) on Dutch poultry farms, each matched with four comparable controls. We trained machine learning classifiers to predict outbreak risk with predictors analyzed at different spatial scales. Of the 20 best explaining predictors, 17 consisted of densities of water-associated bird species, 2 of birds of prey, and 1 represented the surrounding landscape, i.e., agricultural cover. The spatial distribution of mallard (Anas platyrhynchos) contributed most to risk prediction, followed by mute swan (Cygnus olor), common kestrel (Falco tinnunculus) and brant goose (Branta bernicla). The model successfully distinguished cases from controls, with an area under the receiver operating characteristic curve of 0.92, indicating accurate prediction of HPAI outbreak risk despite the limited numbers of cases. Different classification algorithms led to similar predictions, demonstrating robustness of the risk maps. These analyses and risk maps facilitate insights into the role of wild bird species and support prioritization of areas for surveillance, biosecurity measures and establishments of new poultry farms to reduce HPAI outbreak risks.

3.
Transbound Emerg Dis ; 68(1): 88-97, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32418364

RESUMEN

In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.


Asunto(s)
Pollos , Brotes de Enfermedades/veterinaria , Patos , Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Animales , Subtipo H5N8 del Virus de la Influenza A/fisiología , Virus de la Influenza A/clasificación , Gripe Aviar/virología , Países Bajos/epidemiología , Enfermedades de las Aves de Corral/virología
4.
Anim Microbiome ; 2(1): 28, 2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-33499947

RESUMEN

BACKGROUND: Laying hens with access to outdoor ranges are exposed to additional environmental factors and microorganisms, including potential pathogens. Differences in composition of the cloacal microbial community between indoor- and outdoor-housed layers may serve as an indicator for exposure to the outdoor environment, including its pathogens, and may yield insights into factors affecting the chickens' microbiota community dynamics. However, little is known about the influence of outdoor housing on microbiota community composition in commercial layer flocks. We performed a cross-sectional field study to evaluate differences in the cloacal microbiota of indoor- vs outdoor-layers across farms. Eight layer flocks (four indoor, four outdoor) from five commercial poultry farms were sampled. Indoor and outdoor flocks with the same rearing flock of origin, age, and breed were selected. In each flock, cloacal swabs were taken from ten layers, and microbiota were analysed with 16S rRNA gene amplicon sequencing. RESULTS: Housing type (indoor vs outdoor), rearing farm, farm and poultry house within the farm all significantly contributed to bacterial community composition. Poultry house explained most of the variation (20.9%), while housing type only explained 0.2% of the variation in community composition. Bacterial diversity was higher in indoor-layers than in outdoor-layers, and indoor-layers also had more variation in their bacterial community composition. No phyla or genera were found to be differentially abundant between indoor and outdoor poultry houses. One amplicon sequence variant was exclusively present in outdoor-layers across all outdoor poultry houses, and was identified as Dietzia maris. CONCLUSIONS: This study shows that exposure to an outdoor environment is responsible for a relatively small proportion of the community variation in the microbiota of layers. The poultry house, farm, and rearing flock play a much greater role in determining the cloacal microbiota composition of adult laying hens. Overall, measuring differences in cloacal microbiota of layers as an indicator for the level of exposure to potential pathogens and biosecurity seems of limited practical use. To gain more insight into environmental drivers of the gut microbiota, future research should aim at investigating community composition of commercial layer flocks over time.

5.
Front Microbiol ; 11: 626713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584593

RESUMEN

Associations between animal health and performance, and the host's microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host's immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens' microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens' immediate environment affects the microbiota composition.

6.
Poult Sci ; 98(12): 6542-6551, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31541252

RESUMEN

Interspecies transmission of fecal microbiota can serve as an indicator for (indirect) contact between domestic and wild animals to assess risks of pathogen transmission, e.g., avian influenza. Here, we investigated whether oral inoculation of laying hens with feces of wild ducks (mallards, Anas platyrhynchos) resulted in a hen fecal microbiome that was detectably altered on community parameters or relative abundances of individual genera. To distinguish between effects of the duck inoculum and effects of the inoculation procedure, we compared the fecal microbiomes of adult laying hens resulting from 3 treatments: inoculation with wild duck feces (duck), inoculation with chicken feces (auto), and a negative control group with no treatment. We collected cloacal swabs from 7 hens per treatment before (day 0), and 2 and 7 D after inoculation, and performed 16S rRNA amplicon sequencing. No distinguishable effect of inoculation with duck feces on microbiome community (alpha and beta diversity) was found compared to auto or control treatments. At the individual taxonomic level, the relative abundance of the genus Alistipes (phylum Bacteroidetes) was significantly higher in the inoculated treatments (auto and duck) compared to the control 2 D after inoculation. Seven days after inoculation, the relative abundance of Alistipes had increased in the control and no effect was found anymore across treatments. These effects might be explained by the perturbation of the hen's microbiome caused by the inoculation procedure itself, or by intrinsic temporal variation in the hen's microbiome. This experiment shows that a single inoculation of fecal microbiota from duck feces to laying hens did not cause a measurable alteration of the gut microbiome community. Furthermore, the temporary change in relative abundance for Alistipes could not be attributed to the duck feces inoculation. These outcomes suggest that the fecal microbiome of adult laying hens may not be a useful indicator for detection of single oral exposure to wild duck feces.


Asunto(s)
Pollos/microbiología , Patos/microbiología , Heces/microbiología , Microbiota , Vacunación/veterinaria , Animales , Animales Salvajes/microbiología , Femenino , ARN Ribosómico 16S/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...