Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011585, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37939134

RESUMEN

Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMß2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Monocitos , Ligandos , Vacuolas , Malaria Falciparum/parasitología , Eritrocitos/parasitología , Células Asesinas Naturales , Plasmodium falciparum , Malaria/metabolismo , Fagocitosis , Inmunoglobulina G/metabolismo
2.
Elife ; 102021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393463

RESUMEN

Malaria parasites use the RhopH complex for erythrocyte invasion and channel-mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they interact and traffic through subcellular sites to serve these essential functions is unknown. We show that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1 stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and predicted transmembrane helices shielded. We propose a large protein complex stabilized for trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling smaller two-state pore-forming proteins in other organisms.


Malaria is an infectious disease caused by the family of Plasmodium parasites, which pass between mosquitoes and animals to complete their life cycle. With one bite, mosquitoes can deposit up to one hundred malaria parasites into the human skin, from where they enter the bloodstream. After increasing their numbers in liver cells, the parasites hijack, invade and remodel red blood cells to create a safe space to grow and mature. This includes inserting holes in the membrane of red blood cells to take up nutrients from the bloodstream. A complex of three tightly bound RhopH proteins plays an important role in these processes. These proteins are unique to malaria parasites, and so far, it has been unclear how they collaborate to perform these specialist roles. Here, Schureck et al. have purified the RhopH complex from Plasmodium-infected human blood to determine its structure and reveal how it moves within an infected red blood cell. Using cryo-electron microscopy to visualise the assembly in fine detail, Schureck et al. showed that the three proteins bind tightly to each other over large areas using multiple anchor points. As the three proteins are produced, they assemble into a complex that remains dissolved and free of parasite membranes until the proteins have been delivered to their target red blood cells. Some hours after delivery, specific sections of the RhopH complex are inserted into the red blood cell membrane to produce pores that allow them to take up nutrients and to grow. The study of Schureck et al. provides important new insights into how the RhopH complex serves multiple roles during Plasmodium infection of human red blood cells. The findings provide a framework for the development of effective antimalarial treatments that target RhopH proteins to block red blood cell invasion and nutrient uptake.


Asunto(s)
Eritrocitos/parasitología , Genes Protozoarios/fisiología , Plasmodium falciparum/fisiología , Familia de Multigenes/fisiología , Nutrientes/metabolismo , Plasmodium falciparum/genética
3.
Mol Microbiol ; 111(6): 1449-1462, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30793388

RESUMEN

Bacterial toxin-antitoxin systems are important factors implicated in growth inhibition and plasmid maintenance. Type II toxin-antitoxin pairs are regulated at the transcriptional level by the antitoxin itself. Here, we examined how the HigA antitoxin regulates the expression of the Proteus vulgaris higBA toxin-antitoxin operon from the Rts1 plasmid. The HigBA complex adopts a unique architecture suggesting differences in its regulation as compared to classical type II toxin-antitoxin systems. We find that the C-terminus of the HigA antitoxin is required for dimerization and transcriptional repression. Further, the HigA structure reveals that the C terminus is ordered and does not transition between disorder-to-order states upon toxin binding. HigA residue Arg40 recognizes a TpG dinucleotide in higO2, an evolutionary conserved mode of recognition among prokaryotic and eukaryotic transcription factors. Comparison of the HigBA and HigA-higO2 structures reveals the distance between helix-turn-helix motifs of each HigA monomer increases by ~4 Å in order to bind to higO2. Consistent with these data, HigBA binding to each operator is twofold less tight than HigA alone. Together, these data show the HigB toxin does not act as a co-repressor suggesting potential novel regulation in this toxin-antitoxin system.


Asunto(s)
Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Proteus vulgaris/genética , Proteínas Represoras/química , Proteínas Bacterianas/genética , Operón , Regiones Promotoras Genéticas , Multimerización de Proteína , Proteus vulgaris/química , Proteínas Represoras/genética , Sistemas Toxina-Antitoxina
4.
mBio ; 9(3)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739907

RESUMEN

Malaria parasites increase host erythrocyte permeability to ions and nutrients via a broad-selectivity channel known as the plasmodial surface anion channel (PSAC), linked to parasite-encoded CLAG3 and two associated proteins. These proteins lack the multiple transmembrane domains typically present in channel-forming proteins, raising doubts about their precise roles. Using the virulent human Plasmodium falciparum parasite, we report that CLAG3 undergoes self-association and that this protein's expression determines channel phenotype quantitatively. We overcame epigenetic silencing of clag3 paralogs and engineered parasites that express two CLAG3 isoforms simultaneously. Stoichiometric expression of these isoforms yielded intermediate channel phenotypes, in agreement with observed trafficking of both proteins to the host membrane. Coimmunoprecipitation and surface labeling revealed formation of CLAG3 oligomers. In vitro selections applied to these transfectant lines yielded distinct mutants with correlated changes in channel activity. These findings support involvement of the identified oligomers in PSAC formation and parasite nutrient acquisition.IMPORTANCE Malaria parasites are globally important pathogens that evade host immunity by replicating within circulating erythrocytes. To facilitate intracellular growth, these parasites increase erythrocyte nutrient uptake through an unusual ion channel. The parasite CLAG3 protein is a key determinant of this channel, but its lack of homology to known ion channels has raised questions about possible mechanisms. Using a new method that allows simultaneous expression of two different CLAG3 proteins, we identify self-association of CLAG3. The two expressed isoforms faithfully traffic to and insert in the host membrane, while remaining associated with two unrelated parasite proteins. Both the channel phenotypes and molecular changes produced upon selections with a highly specific channel inhibitor are consistent with a multiprotein complex that forms the nutrient pore. These studies support direct involvement of the CLAG3 protein in channel formation and are relevant to antimalarial drug discovery projects targeting parasite nutrient acquisition.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Transporte Biológico , Eritrocitos/parasitología , Humanos , Nutrientes/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
6.
Elife ; 62017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28221136

RESUMEN

Malaria parasites evade immune detection by growth and replication within erythrocytes. After erythrocyte invasion, the intracellular pathogen must increase host cell uptake of nutrients from plasma. Here, we report that the parasite-encoded RhopH complex contributes to both invasion and channel-mediated nutrient uptake. As rhoph2 and rhoph3 gene knockouts were not viable in the human P. falciparum pathogen, we used conditional knockdowns to determine that the encoded proteins are essential and to identify their stage-specific functions. We exclude presumed roles for RhopH2 and CLAG3 in erythrocyte invasion but implicate a RhopH3 contribution either through ligand-receptor interactions or subsequent parasite internalization. These proteins then traffic via an export translocon to the host membrane, where they form a nutrient channel. Knockdown of either RhopH2 or RhopH3 disrupts the entire complex, interfering with organellar targeting and subsequent trafficking. Therapies targeting this complex should attack the pathogen at two critical points in its cycle.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Genes Esenciales , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
7.
Nucleic Acids Res ; 44(16): 7944-53, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27378776

RESUMEN

Bacteria encode multiple type II toxin-antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challenge in the field. Structural studies of RelE and YoeB toxins bound to the ribosome provided significant insights but biochemical experiments with RelE were required to clearly demonstrate which residues are critical for acid-base catalysis of mRNA cleavage. Here, we solved an X-ray crystal structure of the wild-type, ribosome-dependent toxin HigB bound to the ribosome revealing potential catalytic residues proximal to the mRNA substrate. Using cell-based and biochemical assays, we further determined that HigB residues His54, Asp90, Tyr91 and His92 are critical for activity in vivo, while HigB H54A and Y91A variants have the largest effect on mRNA cleavage in vitro Comparison of X-ray crystal structures of two catalytically inactive HigB variants with 70S-HigB bound structures reveal that HigB active site residues undergo conformational rearrangements likely required for recognition of its mRNA substrate. These data support the emerging concept that ribosome-dependent toxins have diverse modes of mRNA recognition.


Asunto(s)
Toxinas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Cristalografía por Rayos X , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
RNA ; 22(8): 1261-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27307497

RESUMEN

Activation of bacterial toxins during stress results in cleavage of mRNAs in the context of the ribosome. These toxins are thought to function as global translational inhibitors yet recent studies suggest each may have distinct mRNA specificities that result in selective translation for bacterial survival. Here we demonstrate that mRNA in the context of a bacterial 30S subunit is sufficient for ribosome-dependent toxin HigB endonucleolytic activity, suggesting that HigB interferes with the initiation step of translation. We determined the X-ray crystal structure of HigB bound to the 30S, revealing that two solvent-exposed clusters of HigB basic residues directly interact with 30S 16S rRNA helices 18, 30, and 31. We further show that these HigB residues are essential for ribosome recognition and function. Comparison with other ribosome-dependent toxins RelE and YoeB reveals that each interacts with similar features of the 30S aminoacyl (A) site yet does so through presentation of diverse structural motifs.


Asunto(s)
ARN Mensajero/metabolismo , Toxinas Biológicas/metabolismo , Cristalografía por Rayos X , Estructura Molecular , Biosíntesis de Proteínas , Toxinas Biológicas/química
9.
Proc Natl Acad Sci U S A ; 112(45): 13862-7, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26508639

RESUMEN

Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. Here, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop to recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.


Asunto(s)
Toxinas Bacterianas/metabolismo , ARN Mensajero/metabolismo , Sitios de Unión , Codón , Nucleótidos/metabolismo
10.
Structure ; 22(5): 661-2, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24807074

RESUMEN

In this issue of Structure, Beck and colleagues describe the structure of the Enterobacter cloacae contact-dependent growth inhibition (CDI) toxin in complex with its immunity protein. Further functional studies reveal that CDI targets translation by cleaving 16S ribosomal RNA.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Enterobacter cloacae/química
11.
J Biol Chem ; 289(2): 1060-70, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24257752

RESUMEN

Bacterial toxin-antitoxin (TA) systems regulate key cellular processes to promote cell survival during periods of stress. During steady-state cell growth, antitoxins typically interact with their cognate toxins to inhibit activity presumably by preventing substrate recognition. We solved two x-ray crystal structures of the Proteus vulgaris tetrameric HigB-(HigA)2-HigB TA complex and found that, unlike most other TA systems, the antitoxin HigA makes minimal interactions with toxin HigB. HigB adopts a RelE family tertiary fold containing a highly conserved concave surface where we predict its active site is located. HigA does not cover the solvent-exposed HigB active site, suggesting that, in general, toxin inhibition is not solely mediated by active site hindrance by its antitoxin. Each HigA monomer contains a helix-turn-helix motif that binds to its own DNA operator to repress transcription during normal cellular growth. This is distinct from antitoxins belonging to other superfamilies that typically only form DNA-binding motifs upon dimerization. We further show that disruption of the HigB-(HigA)2-HigB tetramer to a HigBA heterodimer ablates operator binding. Taken together, our biochemical and structural studies elucidate the novel molecular details of the HigBA TA system.


Asunto(s)
Antitoxinas/química , Proteínas Bacterianas/química , Complejos Multiproteicos/química , Secuencia de Aminoácidos , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteus vulgaris/genética , Proteus vulgaris/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...