Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38050126

RESUMEN

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Asunto(s)
Microtúbulos , Neuronas , Animales , Ratones , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Neuronas/fisiología , Neurogénesis , Plasticidad Neuronal
2.
J Gen Physiol ; 155(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36809486

RESUMEN

KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Simulación de Dinámica Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp
3.
Commun Biol ; 5(1): 589, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705737

RESUMEN

Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine Mkln1 knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that Mkln1 deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from Mkln1 ablation.


Asunto(s)
Actinas , Extinción Psicológica , Actinas/metabolismo , Animales , Encéfalo/metabolismo , Cognición , Miedo , Ratones
4.
J Physiol ; 599(19): 4427-4439, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425634

RESUMEN

In myelinated nerve fibres, action potentials are generated at nodes of Ranvier. These structures are located at interruptions of the myelin sheath, forming narrow gaps with small rings of axolemma freely exposed to the extracellular space. The mammalian node contains a high density of Na+ channels and K+ -selective leakage channels. Voltage-dependent Kv1 channels are only present in the juxta-paranode. Recently, the leakage channels have been identified as K2P channels (TRAAK, TREK-1). K2P channels are K+ -selective 'background' channels, characterized by outward rectification and their ability to be activated, e.g. by temperature, mechanical stretch or arachidonic acid. We are only beginning to elucidate the peculiar functions of nodal K2P channels. I will discuss two functions of the nodal K2P-mediated conductance. First, at body temperature K2P channels have a high open probability, thereby inducing a resting potential of about -85 mV. This negative resting potential reduces steady-state Na+ channel inactivation and ensures a large Na+ inward current upon a depolarizing stimulus. Second, the K2P conductance is involved in nodal action potential repolarization. The identification of nodal K2P channels is exciting since it shows that the nodal K+ conductance is not a fixed value but can be changed: it can be increased or decreased by a broad range of K2P modulators, thereby modulating, for example, the resting potential. The functional importance of nodal K2P channels will be exemplified by describing in more detail the function of the K2P conductance increase by raising the temperature from room temperature to 37°C.


Asunto(s)
Axones , Fibras Nerviosas Mielínicas , Potenciales de Acción , Animales , Potenciales de la Membrana , Vaina de Mielina
5.
PLoS Biol ; 18(8): e3000820, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866173

RESUMEN

Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition.


Asunto(s)
Ácido Glutámico/metabolismo , Cinesinas/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo , Neuronas/metabolismo , Espastina/deficiencia , Tubulina (Proteína)/metabolismo , Potenciales de Acción , Animales , Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores , Hipocampo/patología , Hipocampo/fisiopatología , Ratones Noqueados , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Actividad Motora , Neuronas/patología , Neuronas/ultraestructura , Transporte de Proteínas , Espastina/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Vesículas Sinápticas/metabolismo
6.
Elife ; 82019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674909

RESUMEN

TRAAK is a membrane tension-activated K+ channel that has been associated through behavioral studies to mechanical nociception. We used specific monoclonal antibodies in mice to show that TRAAK is localized exclusively to nodes of Ranvier, the action potential propagating elements of myelinated nerve fibers. Approximately 80 percent of myelinated nerve fibers throughout the central and peripheral nervous system contain TRAAK in what is likely an all-nodes or no-nodes per axon fashion. TRAAK is not observed at the axon initial segment where action potentials are first generated. We used polyclonal antibodies, the TRAAK inhibitor RU2 and node clamp amplifiers to demonstrate the presence and functional properties of TRAAK in rat nerve fibers. TRAAK contributes to the 'leak' K+ current in mammalian nerve fiber conduction by hyperpolarizing the resting membrane potential, thereby increasing Na+ channel availability for action potential propagation. We speculate on why nodes of Ranvier contain a mechanosensitive K+ channel.


Asunto(s)
Neuronas/enzimología , Canales de Potasio/análisis , Nódulos de Ranvier/enzimología , Potenciales de Acción , Animales , Ratones , Neuronas/fisiología , Ratas
7.
Front Cell Neurosci ; 13: 330, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474830

RESUMEN

The actin cytoskeleton is crucial for function and morphology of neuronal synapses. Moreover, altered regulation of the neuronal actin cytoskeleton has been implicated in neuropsychiatric diseases such as autism spectrum disorder (ASD). Myosin XVI is a neuronally expressed unconventional myosin known to bind the WAVE regulatory complex (WRC), a regulator of filamentous actin (F-actin) polymerization. Notably, the gene encoding the myosin's heavy chain (MYO16) shows genetic association with neuropsychiatric disorders including ASD. Here, we investigated whether myosin XVI plays a role for actin cytoskeleton regulation in the dendritic spines of cerebellar Purkinje cells (PCs), a neuronal cell type crucial for motor learning, social cognition and vocalization. We provide evidence that both myosin XVI and the WRC component WAVE1 localize to PC spines. Fluorescence recovery after photobleaching (FRAP) analysis of GFP-actin in cultured PCs shows that Myo16 knockout as well as PC-specific Myo16 knockdown, lead to faster F-actin turnover in the dendritic spines of PCs. We also detect accelerated F-actin turnover upon interference with the WRC, and upon inhibition of Arp2/3 that drives formation of branched F-actin downstream of the WRC. In contrast, inhibition of formins that are responsible for polymerization of linear actin filaments does not cause faster F-actin turnover. Together, our data establish myosin XVI as a regulator of the postsynaptic actin cytoskeleton and suggest that it is an upstream activator of the WRC-Arp2/3 pathway in PC spines. Furthermore, ultra-structural and electrophysiological analyses of Myo16 knockout cerebellum reveals the presence of reduced numbers of synaptic vesicles at presynaptic terminals in the absence of the myosin. Therefore, we here define myosin XVI as an F-actin regulator important for presynaptic organization in the cerebellum.

8.
Cell Rep ; 28(1): 11-20.e9, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269433

RESUMEN

Myosin VI is an actin-based cytoskeletal motor implicated in various steps of membrane trafficking. Here, we investigated whether this myosin is crucial for synaptic function and plasticity in neurons. We find that myosin VI localizes at cerebellar parallel fiber to Purkinje cell synapses and that the myosin is indispensable for long-term depression of AMPA-receptor-mediated synaptic signal transmission at this synapse. Moreover, direct visualization of GluA2-containing AMPA receptors in Purkinje cells reveals that the myosin drives removal of AMPA receptors from the surface of dendritic spines in an activity-dependent manner. Co-immunoprecipitation and super-resolution microscopy indicate that specifically the interaction of myosin VI with the clathrin adaptor component α-adaptin is important during long-term depression. Together, these data suggest that myosin VI directly promotes clathrin-mediated endocytosis of AMPA receptors in Purkinje cells to mediate cerebellar long-term depression. Our results provide insights into myosin VI function and the molecular mechanisms underlying synaptic plasticity.


Asunto(s)
Cerebelo/metabolismo , Depresión Sináptica a Largo Plazo , Cadenas Pesadas de Miosina/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/fisiología , Clatrina/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Endocitosis/genética , Endocitosis/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Cadenas Pesadas de Miosina/antagonistas & inhibidores , Cadenas Pesadas de Miosina/genética , Células de Purkinje/metabolismo , Receptores AMPA/agonistas , Receptores AMPA/química , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
9.
J Physiol ; 596(5): 769-783, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29333676

RESUMEN

Mammalian ether-à-go-go (EAG) channels are voltage-gated K+ channels. They are encoded by the KCNH gene family and divided into three subfamilies, eag (Kv10), erg (eag-related gene; Kv11) and elk (eag-like; Kv12). All EAG channel subtypes are expressed in the brain where they effectively modulate neuronal excitability. This Topical Review describes the biophysical properties of each of the EAG channel subtypes, their function in neurons and the neurological diseases induced by EAG channel mutations. In contrast to the function of erg currents in the heart, where they contribute to repolarization of the cardiac action potential, erg currents in neurons are involved in the maintenance of the resting potential, setting of action potential threshold and frequency accommodation. They can even support high frequency firing by preventing a depolarization-induced Na+ channel block. EAG channels are modulated differentially, e.g. eag channels by intracellular Ca2+ , erg channels by extracellular K+ and GPCRs, and elk channels by changes in pH. So far, only currents mediated by erg channels have been recorded in neurons with the help of selective blockers. Neuronal eag and elk currents have not been isolated due to the lack of suitable channel blockers. However, findings in KO mice indicate a physiological role of eag1 currents in synaptic transmission and an involvement of elk2 currents in cognitive performance. Human eag1 and eag2 gain-of-function mutations underlie syndromes associated with epileptic seizures.


Asunto(s)
Potenciales de Acción , Canales de Potasio Éter-A-Go-Go/metabolismo , Potenciales de la Membrana , Neuronas/fisiología , Animales , Humanos
10.
Cell Rep ; 15(5): 968-977, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117409

RESUMEN

The kinesin KIF21B is implicated in several human neurological disorders, including delayed cognitive development, yet it remains unclear how KIF21B dysfunction may contribute to pathology. One limitation is that relatively little is known about KIF21B-mediated physiological functions. Here, we generated Kif21b knockout mice and used cellular assays to investigate the relevance of KIF21B in neuronal and in vivo function. We show that KIF21B is a processive motor protein and identify an additional role for KIF21B in regulating microtubule dynamics. In neurons lacking KIF21B, microtubules grow more slowly and persistently, leading to tighter packing in dendrites. KIF21B-deficient neurons exhibit decreased dendritic arbor complexity and reduced spine density, which correlate with deficits in synaptic transmission. Consistent with these observations, Kif21b-null mice exhibit behavioral changes involving learning and memory deficits. Our study provides insight into the cellular function of KIF21B and the basis for cognitive decline resulting from KIF21B dysregulation.


Asunto(s)
Forma de la Célula , Cinesinas/metabolismo , Memoria/fisiología , Microtúbulos/metabolismo , Neuronas/citología , Sinapsis/metabolismo , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Marcación de Gen , Células HeLa , Humanos , Cinesinas/deficiencia , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones Noqueados , Microtúbulos/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Reproducibilidad de los Resultados
12.
Nat Commun ; 6: 6872, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25891999

RESUMEN

Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Aprendizaje/fisiología , Proteínas de la Membrana/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/fisiología , Animales , Proteínas del Citoesqueleto/genética , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Hipocampo/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Receptores de GABA-A/genética
13.
Proc Natl Acad Sci U S A ; 112(8): E891-900, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675485

RESUMEN

GABAA receptors shape synaptic transmission by modulating Cl(-) conductance across the cell membrane. Remarkably, animal toxins that specifically target GABAA receptors have not been identified. Here, we report the discovery of micrurotoxin1 (MmTX1) and MmTX2, two toxins present in Costa Rican coral snake venom that tightly bind to GABAA receptors at subnanomolar concentrations. Studies with recombinant and synthetic toxin variants on hippocampal neurons and cells expressing common receptor compositions suggest that MmTX1 and MmTX2 allosterically increase GABAA receptor susceptibility to agonist, thereby potentiating receptor opening as well as desensitization, possibly by interacting with the α(+)/ß(-) interface. Moreover, hippocampal neuron excitability measurements reveal toxin-induced transitory network inhibition, followed by an increase in spontaneous activity. In concert, toxin injections into mouse brain result in reduced basal activity between intense seizures. Altogether, we characterized two animal toxins that enhance GABAA receptor sensitivity to agonist, thereby establishing a previously unidentified class of tools to study this receptor family.


Asunto(s)
Venenos Elapídicos/farmacología , Elapidae/metabolismo , Péptidos/farmacología , Receptores de GABA-A/metabolismo , Secuencia de Aminoácidos , Animales , Venenos Elapídicos/química , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cinética , Masculino , Ratones , Datos de Secuencia Molecular , Mutación/genética , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos/química , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA-A/química , Receptores de GABA-A/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Xenopus
14.
J Neurosci ; 33(42): 16729-40, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133274

RESUMEN

We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Potenciales de la Membrana/fisiología , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Potenciales de Acción/fisiología , Animales , Cerebelo/metabolismo , Venenos de Cnidarios/farmacología , Simulación por Computador , Agonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Modelos Neurológicos , Receptores de Glutamato Metabotrópico/agonistas , Venenos de Escorpión/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos de Guayano
15.
Pflugers Arch ; 463(2): 365-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075718

RESUMEN

HERG (human ether-à-go-go-related gene) K(+) currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10-15 mV. This result indicated that HERG K(+) conductance contributes considerably to the maintenance of the resting potential of about -45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth.


Asunto(s)
Proliferación Celular , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Neoplasias Pulmonares/patología , Carcinoma Pulmonar de Células Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Piperidinas/farmacología , Piridinas/farmacología , ARN Interferente Pequeño/farmacología , Carcinoma Pulmonar de Células Pequeñas/metabolismo
16.
Lung Cancer ; 74(2): 178-87, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21511354

RESUMEN

BACKGROUND: Small cell lung cancer (SCLC) is one of the most aggressive malignancies implying a very poor prognosis for patients even under therapy. Since it is known that SCLC cells exhibit neurone-like characteristics, we investigated whether a neuronal induction medium (NID) consisting of indomethacin (200 µM), 3-isobutyl-1-methylxanthine (IBMX, 500 µM) and insulin (5 µg/ml) induces neuronal differentiation and by this reduces malignancy of SCLC in vitro. METHODS: Anti-proliferative effects were tested by incubating five SCLC cell lines (OH1, OH3, SW2, H69 and H82) with NID for 72 h (XTT-assay). Afterwards, anti-proliferative as well as cytotoxic effects (lactate dehydrogenase [LDH] assay, electron microscopy) of a range of drug concentrations (indomethacin 6.25-800 µM, IBMX 15.625-2000 µM and combinations of both) regarding H82 and SW2 were analysed. We further investigated the presence of cyclooxygenase- (COX-) 1 and 2 (IHC, Western blot) as well as levels of COX-2 before and after treatment. Neuronal differentiation was evaluated by morphological analyses (electron microscopy), detection of CD 56 and CD 171 (FACS) and recording Na(+) and K(+) currents (patch clamp). RESULTS: Proliferation of all cell lines was inhibited significantly in a dose dependent manner (linear regression), whereas SW2 and H82 were most sensitive. Treatment with insulin alone had no effect at all. Cytotoxic effects were only observed after incubation with high concentrations of indomethacin (H82) and combined treatment (SW2). COX-1 and 2 were detectable in H82 and SW2, whereas the level of COX-2 remained unaffected under treatment. By electron microscopy, we could not observe distinct neurone-like morphological changes after 72 h of treatment. However, the majority of H82 and SW2 cells expressed both CD 56 (NCAM) and CD 171 (L1), showing an increase of NCAM and L1 intensity at the cell surface after 7 and 14 days of treatment. We further demonstrated an up-regulation of neurone-specific Na(+) currents as well as a significant down-regulation of herg K(+) currents after NID treatment. CONCLUSION: Our findings demonstrate significant anti-proliferative, non-toxic effects of indomethacin and IBMX on SCLC cells in vitro. Treated SCLC cells further possess increased neuronal characteristics in vitro, possibly leading to a reduced malignant potential.


Asunto(s)
1-Metil-3-Isobutilxantina/farmacología , Indometacina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neuronas/efectos de los fármacos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Antígeno CD56/metabolismo , Diferenciación Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/fisiopatología , Canales de Sodio/genética , Canales de Sodio/metabolismo
17.
J Neurosci ; 30(38): 12733-44, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20861378

RESUMEN

Neuroligins are postsynaptic cell adhesion molecules that associate with presynaptic neurexins. Both factors form a transsynaptic connection, mediate signaling across the synapse, specify synaptic functions, and play a role in synapse formation. Neuroligin dysfunction impairs synaptic transmission, disrupts neuronal networks, and is thought to participate in cognitive diseases. Here we report that chemical treatment designed to induce long-term potentiation or long-term depression (LTD) induces neuroligin 1/3 turnover, leading to either increased or decreased surface membrane protein levels, respectively. Despite its structural role at a crucial transsynaptic position, GFP-neuroligin 1 leaves synapses in hippocampal neurons over time with chemical LTD-induced neuroligin internalization depending on an intact microtubule cytoskeleton. Accordingly, neuroligin 1 and its binding partner postsynaptic density protein-95 (PSD-95) associate with components of the dynein motor complex and undergo retrograde cotransport with a dynein subunit. Transgenic depletion of dynein function in mice causes postsynaptic NLG1/3 and PSD-95 enrichment. In parallel, PSD lengths and spine head sizes are significantly increased, a phenotype similar to that observed upon transgenic overexpression of NLG1 (Dahlhaus et al., 2010). Moreover, application of a competitive PSD-95 peptide and neuroligin 1 C-terminal mutagenesis each specifically alter neuroligin 1 surface membrane expression and interfere with its internalization. Our data suggest the concept that synaptic plasticity regulates neuroligin turnover through active cytoskeleton transport.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Biotinilación , Células Cultivadas , Citoesqueleto/metabolismo , Homólogo 4 de la Proteína Discs Large , Dineínas/metabolismo , Electrofisiología , Guanilato-Quinasas , Hipocampo/citología , Inmunohistoquímica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transfección
18.
J Peripher Nerv Syst ; 15(1): 63-72, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20433607

RESUMEN

Flupirtine is an activator of Kv7 (KCNQ/M) potassium channels that has found clinical use as an analgesic with muscle relaxant properties. Kv7 potassium channels are expressed in axonal membranes and pharmacological activation of these channels may restore abnormal nerve excitability. We have examined the effect of flupirtine on the electrical excitability of myelinated axons in isolated segments of rat sural nerve. Axonal excitability was studied in vitro with the same parameters used by clinical neurophysiologists to assess peripheral nerve excitability in situ. Application of flupirtine in low micromolar concentrations resulted in an increase in threshold current, a reduction of refractoriness and an increase in post-spike superexcitability. These effects are consistent with an increase in Kv7 conductance and membrane hyperpolarization. Flupirtine also enhanced and prolonged the late, long-lasting period of axonal subexcitability that follows a short burst of action potentials. This effect was blocked by XE 991 (10 microM), an antagonist of Kv7 channels. In summary, flupirtine affects measures of excitability that are altered in the myelinated axons of patients with peripheral nerve disorders. This indicates that neuropathies with abnormal nerve excitability parameters corresponding to those affected by flupirtine may benefit from activation of axonal Kv7 potassium channels.


Asunto(s)
Aminopiridinas/farmacología , Analgésicos/farmacología , Axones/efectos de los fármacos , Canales de Potasio KCNQ/agonistas , Fibras Nerviosas Mielínicas/efectos de los fármacos , Nervio Sural/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Aminopiridinas/administración & dosificación , Analgésicos/administración & dosificación , Animales , Antracenos/farmacología , Axones/fisiología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Técnicas In Vitro , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microelectrodos , Fibras Nerviosas Mielínicas/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Nervio Sural/fisiología , Factores de Tiempo
19.
Physiol Rev ; 90(2): 755-96, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20393197

RESUMEN

Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Mutación , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína
20.
J Mol Cell Cardiol ; 49(1): 48-57, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20188738

RESUMEN

Different K(+) currents have been implicated in the myocardial action potential repolarization including the I(Kr). ERG1 alpha subunits, identified as the molecular correlate of I(Kr), have been shown to form heteromultimeric channels in the heart and their activity is modulated by a complex interplay of signal transduction events. Using electrophysiological techniques, we examined the effects of the cGMP-analogue 8-Br-cGMP on rat and guinea-pig papillary action potential duration (APD), on the biophysical properties of heterologously expressed homo- and heteromeric ERG1 channels, and on cardiac I(Kr). 8-Br-cGMP prolonged APD by about 25% after pharmacological inhibition of L-type Ca(2+) currents and I(Ks). The prolongation was completely abolished by prior application of the hERG channel blocker E-4031 or the protein kinase G (PKG) inhibitor Rp-8-Br-cGMPS. Expression analysis revealed the presence of both ERG1a and -1b subunits in rat papillary muscle. Both 8-Br-cGMP and ANP inhibited heterologously expressed ERG1b and even stronger ERG1a/1b channels, whereas ERG1a channels remained unaffected. The inhibitory 8-Br-cGMP effects were PKG-dependent and involved a profound ERG current reduction, which was also observed with cardiac AP clamp recordings. Measurements of I(Kr) from isolated mouse cardiomyocytes using Cs(+) as charge carrier exhibited faster deactivation kinetics in atrial than in ventricular myocytes consistent with a higher relative expression of ERG1b transcripts in atria than in ventricles. 8-Br-cGMP significantly reduced I(Kr) in atrial, but not in ventricular myocytes. These findings provide first evidence that through heteromeric assembly ERG1 channels become a critical target of cGMP-PKG signaling linking cGMP accumulation to cardiac I(Kr) modulation.


Asunto(s)
GMP Cíclico/metabolismo , Transducción de Señal , Potenciales de Acción , Animales , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Femenino , Cobayas , Ventrículos Cardíacos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Piperidinas , Piridinas , Ratas , Ratas Wistar , Tionucleótidos , Transactivadores , Regulador Transcripcional ERG
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA