Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 13(1): 3182, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823435

RESUMEN

Positron emission tomography (PET) is an in vivo imaging technology that utilizes positron-emitting radioisotope-labeled compounds as PET radiotracers that are commonly used in clinic and in various research areas, including oncology, cardiology, and neurology. Fluorine-18 is the most widely used PET-radionuclide and commonly produced by proton bombardment of 18O-enriched water in a cyclotron. The [18F]fluoride thus obtained generally requires processing by azeotropic drying in order to completely remove H2O before it can be used for nucleophilic radiofluorination. In general, the drying step is important in facilitating the radiofluorination reactions and the preparation of 18F-labeled PET radiotracers. In this communication, we have demonstrated the feasibility of using [18F]tosyl fluoride ([18F]TsF) as a versatile [18F]fluoride source for radiofluorination to bypass the azeotropic drying step, and we have developed a continuous flow solid-phase radiosynthesis strategy to generate [18F]TsF in a form that is excellent for radiofluorination. [18F]TsF shows high reactivity in radiofluorination and provides the features suitable for preparing PET radiotracers on a small scale and exploring novel radiolabeling technologies. Thus, using [18F]TsF as a [18F]fluoride source is a promising strategy that facilitates radiofluorination and provides a convenient and efficient solution for the preparation of 18F-labeled radiopharmaceuticals that is well matched to the emerging trends in PET imaging technologies.


Asunto(s)
Fluoruros , Compuestos de Flúor , Radiofármacos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor
2.
J Nucl Med ; 64(2): 287-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35953305

RESUMEN

Off-target binding of [18F]flortaucipir (FTP) can complicate quantitative PET analyses. An underdiscussed off-target region is the skull. Here, we characterize how often FTP skull binding occurs, its influence on estimates of Alzheimer disease pathology, its potential drivers, and whether skull uptake is a stable feature across time and tracers. Methods: In 313 cognitively normal and mildly impaired participants, CT scans were used to define a skull mask. This mask was used to quantify FTP skull uptake. Skull uptake of the amyloid-ß PET tracers [18F]florbetapir and [11C]Pittsburgh compound B (n = 152) was also assessed. Gaussian mixture modeling defined abnormal levels of skull binding for each tracer. We examined the relationship of continuous bone uptake to known off-target binding in the basal ganglia and choroid plexus as well as skull density measured from the CT. Finally, we examined the confounding effect of skull binding on pathologic quantification. Results: We found that 50 of 313 (∼16%) FTP scans had high levels of skull signal. Most were female (n = 41, 82%), and in women, lower skull density was related to higher FTP skull signal. Visual reads by a neuroradiologist revealed a significant relationship with hyperostosis; however, only 21% of women with high skull binding were diagnosed with hyperostosis. FTP skull signal did not substantially correlate with other known off-target regions. Skull uptake was consistent over longitudinal FTP scans and across tracers. In amyloid-ß-negative, but not -positive, individuals, FTP skull binding impacted quantitative estimates in temporal regions. Conclusion: FTP skull binding is a stable, participant-specific phenomenon and is unrelated to known off-target regions. Effects were found primarily in women and were partially related to lower bone density. The presence of [11C]Pittsburgh compound B skull binding suggests that defluorination does not fully explain FTP skull signal. As signal in skull bone can impact quantitative analyses and differs across sex, it should be explicitly addressed in studies of aging and Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Cráneo/diagnóstico por imagen , Cráneo/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Proteínas tau/metabolismo , Carbolinas/metabolismo , Disfunción Cognitiva/metabolismo
3.
J Nucl Med ; 64(2): 320-328, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36008121

RESUMEN

There remains an unmet need for molecularly targeted imaging agents for multiple myeloma (MM). The integrin very late antigen 4 (VLA4), is differentially expressed in malignant MM cells and in pathogenic inflammatory microenvironmental cells. [64Cu]Cu-CB-TE1A1P-LLP2A (64Cu-LLP2A) is a VLA4-targeted, high-affinity radiopharmaceutical with promising utility for managing patients diagnosed with MM. Here, we evaluated the safety and human radiation dosimetry of 64Cu-LLP2A for potential use in MM patients. Methods: A single-dose [natCu]Cu-LLP2A (Cu-LLP2A) tolerability and toxicity study was performed on CD-1 (Hsd:ICR) male and female mice. 64Cu-LLP2A was synthesized in accordance with good-manufacturing-practice-compliant procedures. Three MM patients and six healthy participants underwent 64Cu-LLP2A-PET/CT or PET/MRI at up to 3 time points to help determine tracer biodistribution, pharmacokinetics, and radiation dosimetry. Time-activity curves were plotted for each participant. Mean organ-absorbed doses and effective doses were calculated using the OLINDA software. Tracer bioactivity was evaluated via cell-binding assays, and metabolites from human blood samples were analyzed with analytic radio-high-performance liquid chromatography. When feasible, VLA4 expression was evaluated in the biopsy tissues using 14-color flow cytometry. Results: A 150-fold mass excess of the desired imaging dose was tolerated well in male and female CD-1 mice (no observed adverse effect level). Time-activity curves from human imaging data showed rapid tracer clearance from blood via the kidneys and bladder. The effective dose of 64Cu-LLP2A in humans was 0.036 ± 0.006 mSv/MBq, and the spleen had the highest organ uptake, 0.142 ± 0.034 mSv/MBq. Among all tissues, the red marrow demonstrated the highest residence time. Image quality analysis supports an early imaging time (4-5 h after injection of the radiotracer) as optimal. Cell studies showed statistically significant blocking for the tracer produced for all human studies (82.42% ± 13.47%). Blood metabolism studies confirmed a stable product peak (>90%) up to 1 h after injection of the radiopharmaceutical. No clinical or laboratory adverse events related to 64Cu-LLP2A were observed in the human participants. Conclusion: 64Cu-LLP2A exhibited a favorable dosimetry and safety profile for use in humans.


Asunto(s)
Mieloma Múltiple , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Animales , Ratones , Radiofármacos/farmacocinética , Distribución Tisular , Ratones Endogámicos ICR , Tomografía de Emisión de Positrones/efectos adversos , Tomografía de Emisión de Positrones/métodos , Radiometría , Mieloma Múltiple/metabolismo
4.
Radiol Imaging Cancer ; 4(1): e210070, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089089

RESUMEN

Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Femenino , Humanos , Estudios Multicéntricos como Asunto , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Estados Unidos
5.
J Nucl Med ; 63(7): 1117-1123, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35058318

RESUMEN

Recent advances in the development of new molecular imaging agents for PET have led to the approval of several new molecular entities for PET imaging by the U.S. Food and Drug Administration (FDA) within the last 10 y. However, the continued use of PET drugs for diagnostic imaging procedures is reliant on a sustainable network of PET manufacturing facilities operating in accordance with the regulations for current good manufacturing practices for PET drugs (title 21, Code of Federal Regulations, part 212). With this goal in mind, a public workshop entitled "PET Drugs: A Workshop on Inspections Management and Regulatory Considerations" was held on the FDA campus in Silver Spring, MD, on February 21, 2020. The workshop was cosponsored by the FDA's Center for Drug Evaluation and Research, the Society of Nuclear Medicine and Molecular Imaging, the Medical Imaging Technology Alliance, and the World Molecular Imaging Society, in collaboration with the Coalition of PET Drug Manufacturers. The organizing committee for the workshop consisted of representatives from academic and commercial PET manufacturers as well as FDA staff members. The coauthors on this paper are all members of the workshop-organizing committee.


Asunto(s)
Aprobación de Drogas , Medicina Nuclear , Humanos , Preparaciones Farmacéuticas , Tomografía de Emisión de Positrones , Estados Unidos , United States Food and Drug Administration
6.
Appl Radiat Isot ; 176: 109865, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34274781

RESUMEN

The molar activity of [18F]fluoride was determined by HPLC of sulfonyl fluorides, which have high UV absorbance and are formed exclusively from sulfonyl chlorides and [18F]fluoride in aqueous solution. The measurable limit of sulfonyl fluorides is as low as 0.1 ppm, allowing measurements up to the theoretical molar activity of [18F]fluoride. The method was validated with standard solutions of fluoride, and provides a convenient way to measure molar activity of [18F]fluoride using only HPLC without specialized equipment.

7.
J Nucl Med ; 62(3): 422-430, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32646881

RESUMEN

The Nuclear Medicine Global Initiative was formed in 2012 by 13 international organizations to promote human health by advancing the field of nuclear medicine and molecular imaging by supporting the practice and application of nuclear medicine. The first project focused on standardization of administered activities in pediatric nuclear medicine and resulted in 2 articles. For its second project the Nuclear Medicine Global Initiative chose to explore issues impacting on access and availability of radiopharmaceuticals around the world. Methods: Information was obtained by survey responses from 35 countries on available radioisotopes, radiopharmaceuticals, and kits for diagnostic and therapeutic use. Issues impacting on access and availability of radiopharmaceuticals in individual countries were also identified. Results: Detailed information on radiopharmaceuticals used in each country, and sources of supply, was evaluated. Responses highlighted problems in access, particularly due to the reliance on a sole provider, regulatory issues, and reimbursement, as well as issues of facilities and workforce, particularly in low- and middle-income countries. Conclusion: Strategies to address access and availability of radiopharmaceuticals are outlined, to enable timely and equitable patient access to nuclear medicine procedures worldwide. In the face of disruptions to global supply chains by the coronavirus disease 2019 outbreak, renewed focus on ensuring a reliable supply of radiopharmaceuticals is a major priority for nuclear medicine practice globally.


Asunto(s)
Internacionalidad , Medicina Nuclear/estadística & datos numéricos , Radiofármacos/provisión & distribución , Tomografía de Emisión de Positrones , Radiofármacos/uso terapéutico , Tomografía Computarizada de Emisión de Fotón Único
8.
EJNMMI Radiopharm Chem ; 4(1): 10, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31659486

RESUMEN

New regulatory guidance documents from the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recently been finalized or are in draft format outlining new pathways for preclinical safety testing. The US and the European Union appear to be moving in a similar direction focussing and refining preclinical safety data requirements for both radiodiagnostics and radiotherapeutics. We here summarize these recent documents from both the US and European perspective.

9.
J Nucl Med ; 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262520

RESUMEN

In recent years, several new radiotracers and radionuclide therapies have been developed. There is a renaissance in nuclear medicine and molecular imaging today, for example, in terms of the ability to image and treat neuroendocrine and prostate malignancies. In order to be able to bring a new drug product from bench to bedside and assist patients, while also ensuring patient safety, stringent regulations must be met. However, differences in regulatory requirements, often based on jurisdictional politics rather than scientific evidence, can hinder global co-operation, increase expense, and slow progress. In an effort to rise above these differences, nuclear medicine advocacy organizations, regulators, and international agencies have begun to identify commonalities in the regulations to achieve harmonization. Indeed, a more streamlined approach to radiopharmaceutical drug development across jurisdictions could be achieved through establishing harmonized requirements for pre-clinical studies and manufacturing standards. This paper provides an educational overview of the regulatory and submission requirements governing investigational radiopharmaceuticals for first-in-human radiopharmaceuticals across the European and North American continents. It is hoped that through ongoing collaboration, regulatory reform and harmonization can become a reality and speed access to the most up-to-date evidence-based patient care for all.

11.
Lancet Oncol ; 18(11): e653-e706, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29208398

RESUMEN

We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.


Asunto(s)
Investigación Biomédica/tendencias , Planificación en Salud/tendencias , Prioridades en Salud , National Cancer Institute (U.S.)/tendencias , Neoplasias/terapia , Investigación Biomédica/métodos , Predicción , Humanos , Oncología Médica/tendencias , Neoplasias/diagnóstico , Medicina de Precisión/tendencias , Estados Unidos
13.
J Nucl Med ; 58(5): 17N, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28461591
18.
J Nucl Med ; 57(9): 20N, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27587797
19.
Mol Ther ; 23(6): 1110-1122, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25807290

RESUMEN

Described herein is a first-in-man attempt to both genetically modify T cells with an imagable suicide gene and track these transduced donor T cells in allogeneic stem cell transplantation recipients using noninvasive positron emission tomography/computerized tomography (PET/CT) imaging. A suicide gene encoding a human CD34-Herpes Simplex Virus-1-thymidine kinase (CD34-TK75) fusion enabled enrichment of retrovirally transduced T cells (TdT), control of graft-versus-host disease and imaging of TdT migration and expansion in vivo in mice and man. Analysis confirmed that CD34-TK75-enriched TdT contained no replication competent γ-retrovirus, were sensitive to ganciclovir, and displayed characteristic retroviral insertion sites (by targeted sequencing). Affinity-purified CD34-TK75(+)-selected donor T cells (1.0-13 × 10(5))/kg were infused into eight patients who relapsed after allogeneic stem cell transplantation. Six patients also were administered 9-[4-((18)F)fluoro-3-hydroxymethyl-butyl]guanine ([(18)F]FHBG) to specifically track the genetically modified donor T cells by PET/CT at several time points after infusion. All patients were assessed for graft-versus-host disease, response to ganciclovir, circulating TdT cells (using both quantitative polymerase chain reaction and [(18)F]FHBG PET/CT imaging), TdT cell clonal expansion, and immune response to the TdT. This phase 1 trial demonstrated that genetically modified T cells and [(18)F]FHBG can be safely infused in patients with relapsed hematologic malignancies after allogeneic stem cell transplantation.


Asunto(s)
Antígenos CD34/inmunología , Tomografía de Emisión de Positrones/métodos , Trasplante de Células Madre/métodos , Linfocitos T/inmunología , Transducción Genética , Trasplante Homólogo/métodos , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Línea Celular Tumoral , Estudios de Factibilidad , Citometría de Flujo , Ganciclovir/farmacología , Enfermedad Injerto contra Huésped/inmunología , Guanina/administración & dosificación , Guanina/análogos & derivados , Herpesvirus Humano 1/genética , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Células 3T3 NIH , Proyectos Piloto , Linfocitos T/metabolismo , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Resultado del Tratamiento
20.
J Nucl Med ; 56(4): 497-500, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25766895

RESUMEN

The Food and Drug Administration has provided a mechanism to reduce time and resources expended on new pharmaceuticals, including radiopharmaceuticals, in order to identify the most promising agents for further development. The exploratory investigational new drug guidance describes early phase 1 exploratory approaches involving microdoses of potential drug candidates that are consistent with regulatory requirements while maintaining the safety needed for human subjects, allowing sponsors to move ahead more quickly with the development of new agents.


Asunto(s)
Drogas en Investigación , Aplicación de Nuevas Drogas en Investigación , Seguridad del Paciente , Radiofármacos/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Industria Farmacéutica/economía , Industria Farmacéutica/tendencias , Humanos , Riesgo , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...