Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sleep Med ; 111: 170-179, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782994

RESUMEN

The magnetic resonance imaging (MRI) visible perivascular space (PVS) reportedly clears amyloid-ß and metabolic waste during sleep. Previous studies reported an association between sleep and the PVS in small vessel disease, traumatic brain injury, and Alzheimer's disease. However, this relationship in a healthy cohort is still unclear. Here, we used the Human Connectome Project Aging dataset to analyze the relationship between sleep and the PVS in cognitively healthy adults across the aging continuum. We measured sleep parameters using the self-reported Pittsburgh Sleep Quality Index questionnaire. We found that older adults who had better sleep quality and sleep efficiency presented with a larger PVS volume fraction in the basal ganglia (BG). However, sleep measures were not associated with PVS volume fraction in the centrum semiovale (CSO). In addition, we found that body mass index (BMI) influenced the BG-PVS across middle-aged and older participants. In the entire cognitively healthy cohort, the effect of sleep quality on PVS volume fraction was mediated by BMI. However, BMI did not influence this effect in the older cohort. Furthermore, there are significant differences in PVS volume fraction across racial/ethnic cohorts. In summary, the effect of sleep on the PVS volume alteration was different in the middle-aged adults and older adults.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sistema Glinfático , Persona de Mediana Edad , Humanos , Anciano , Envejecimiento , Imagen por Resonancia Magnética/métodos , Sueño
2.
Biol Psychiatry Glob Open Sci ; 3(3): 374-385, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519474

RESUMEN

Background: Traumatic brain injury (TBI) can alter brain structure and lead to onset of persistent neuropsychological symptoms. This study investigates the relationship between brain injury and psychological distress after mild TBI using multimodal magnetic resonance imaging. Methods: A total of 89 patients with mild TBI from the TRACK-TBI (Transforming Research and Clinical Knowledge in Traumatic Brain Injury) pilot study were included. Subscales of the Brief Symptoms Inventory 18 for depression, anxiety, and somatization were used as outcome measures of psychological distress approximately 6 months after the traumatic event. Glasgow Coma Scale scores were used to evaluate recovery. Magnetic resonance imaging data were acquired within 2 weeks after injury. Perivascular spaces (PVSs) were segmented using an enhanced PVS segmentation method, and the volume fraction was calculated for the whole brain and white matter regions. Cortical thickness and gray matter structures volumes were calculated in FreeSurfer; diffusion imaging indices and multifiber tracts were extracted using the Quantitative Imaging Toolkit. The analysis was performed considering age, sex, intracranial volume, educational attainment, and improvement level upon discharge as covariates. Results: PVS fractions in the posterior cingulate, fusiform, and postcentral areas were found to be associated with somatization symptoms. Depression, anxiety, and somatization symptoms were associated with the cortical thickness of the frontal-opercularis and occipital pole, putamen and amygdala volumes, and corticospinal tract and superior thalamic radiation. Analyses were also performed on the two hemispheres separately to explore lateralization. Conclusions: This study shows how PVS, cortical, and microstructural changes can predict the onset of depression, anxiety, and somatization symptoms in patients with mild TBI.

3.
JAMA Ophthalmol ; 141(7): 677-685, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289463

RESUMEN

Importance: Best-corrected visual acuity (BCVA) is a measure used to manage diabetic macular edema (DME), sometimes suggesting development of DME or consideration of initiating, repeating, withholding, or resuming treatment with anti-vascular endothelial growth factor. Using artificial intelligence (AI) to estimate BCVA from fundus images could help clinicians manage DME by reducing the personnel needed for refraction, the time presently required for assessing BCVA, or even the number of office visits if imaged remotely. Objective: To evaluate the potential application of AI techniques for estimating BCVA from fundus photographs with and without ancillary information. Design, Setting, and Participants: Deidentified color fundus images taken after dilation were used post hoc to train AI systems to perform regression from image to BCVA and to evaluate resultant estimation errors. Participants were patients enrolled in the VISTA randomized clinical trial through 148 weeks wherein the study eye was treated with aflibercept or laser. The data from study participants included macular images, clinical information, and BCVA scores by trained examiners following protocol refraction and VA measurement on Early Treatment Diabetic Retinopathy Study (ETDRS) charts. Main Outcomes: Primary outcome was regression evaluated by mean absolute error (MAE); the secondary outcome included percentage of predictions within 10 letters, computed over the entire cohort as well as over subsets categorized by baseline BCVA, determined from baseline through the 148-week visit. Results: Analysis included 7185 macular color fundus images of the study and fellow eyes from 459 participants. Overall, the mean (SD) age was 62.2 (9.8) years, and 250 (54.5%) were male. The baseline BCVA score for the study eyes ranged from 73 to 24 letters (approximate Snellen equivalent 20/40 to 20/320). Using ResNet50 architecture, the MAE for the testing set (n = 641 images) was 9.66 (95% CI, 9.05-10.28); 33% of the values (95% CI, 30%-37%) were within 0 to 5 letters and 28% (95% CI, 25%-32%) within 6 to 10 letters. For BCVA of 100 letters or less but more than 80 letters (20/10 to 20/25, n = 161) and 80 letters or less but more than 55 letters (20/32 to 20/80, n = 309), the MAE was 8.84 letters (95% CI, 7.88-9.81) and 7.91 letters (95% CI, 7.28-8.53), respectively. Conclusions and Relevance: This investigation suggests AI can estimate BCVA directly from fundus photographs in patients with DME, without refraction or subjective visual acuity measurements, often within 1 to 2 lines on an ETDRS chart, supporting this AI concept if additional improvements in estimates can be achieved.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Masculino , Persona de Mediana Edad , Femenino , Edema Macular/diagnóstico , Edema Macular/tratamiento farmacológico , Edema Macular/fisiopatología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/complicaciones , Inhibidores de la Angiogénesis/uso terapéutico , Inteligencia Artificial , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Algoritmos , Diabetes Mellitus/tratamiento farmacológico
4.
Neuroimage Clin ; 38: 103383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36965457

RESUMEN

White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with ß-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their ß-amyloid and tau pathologies, then assessed the effects of ß-amyloid and tau on WMH volume and number. We then determined regions in which ß-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global ß-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where ß-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). ß-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between ß-amyloid and WMH burden emphasizes the relationship between ß-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on ß-amyloid's vascular effects and the implications of impaired brain clearance in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/patología , Sustancia Blanca/patología , Proteínas tau/metabolismo , Disfunción Cognitiva/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas , Amiloide
5.
Neuroimage ; 271: 120009, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907282

RESUMEN

Enlarged perivascular spaces (PVS) are considered a biomarker for vascular pathology and are observed in normal aging and neurological conditions; however, research on the role of PVS in health and disease are hindered by the lack of knowledge regarding the normative time course of PVS alterations with age. To this end, we characterized the influence of age, sex and cognitive performance on PVS anatomical characteristics in a large cross-sectional cohort (∼1400) of healthy subjects between 8 and 90 years of age using multimodal structural MRI data. Our results show age is associated with wider and more numerous MRI-visible PVS over the course of the lifetime with spatially-varying patterns of PVS enlargement trajectories. In particular, regions with low PVS volume fraction in childhood are associated with rapid age-related PVS enlargement (e.g., temporal regions), while regions with high PVS volume fraction in childhood are associated with minimal age-related PVS alterations (e.g., limbic regions). PVS burden was significantly elevated in males compared to females with differing morphological time courses with age. Together, these findings contribute to our understanding of perivascular physiology across the healthy lifespan and provide a normative reference for the spatial distribution of PVS enlargement patterns to which pathological alterations can be compared.


Asunto(s)
Sistema Glinfático , Masculino , Femenino , Humanos , Longevidad , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Envejecimiento
6.
Magn Reson Med ; 89(6): 2419-2431, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36692103

RESUMEN

PURPOSE: To develop a weakly supervised 3D perivascular spaces (PVS) segmentation model that combines the filter-based image processing algorithm and the convolutional neural network. METHODS: We present a weakly supervised learning method for PVS segmentation by combing a rule-based image processing approach Frangi filter with a canonical deep learning algorithm Unet using conditional random field theory. The weighted cross entropy loss function and the training patch selection were implemented for the optimization and to alleviate the class imbalance issue. The performance of the model was evaluated on the Human Connectome Project data. RESULTS: The proposed method increases the true positive rate compared to the rule-based method and reduces the false positive rate by 36% in the weakly supervised training experiment and 39.4% in the supervised training experiment compared to Unet, which results in superior overall performance. In addition, by training the model on manually quality controlled and annotated data which includes the subjects with the presence of white matter hyperintensities, the proposed method differentiates between PVS and white matter hyperintensities, which reduces the false positive rate by 78.5% compared to weakly supervised trained model. CONCLUSIONS: Combing the filter-based image processing algorithm and the convolutional neural network algorithm could improve the model's segmentation accuracy, while reducing the training dependence on the large scale annotated PVS mask data by the trained physician. Compared to the filter-based image processing algorithm, the data driven PVS segmentation model using quality-controlled data as the training target could differentiate the white matter hyperintensity from PVS resulting low false positive rate.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
7.
Neuroimage Clin ; 37: 103318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36630864

RESUMEN

The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.


Asunto(s)
Enfermedad de Alzheimer , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Giro Dentado/diagnóstico por imagen , Giro Dentado/patología
8.
Neuroimage ; 257: 119329, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35609770

RESUMEN

In this article, we provide an overview of current neuroimaging methods for studying perivascular spaces (PVS) in humans using brain MRI. In recent years, an increasing number of studies highlighted the role of PVS in cerebrospinal/interstial fluid circulation and clearance of cerebral waste products and their association with neurological diseases. Novel strategies and techniques have been introduced to improve the quantification of PVS and to investigate their function and morphological features in physiological and pathological conditions. After a brief introduction on the anatomy and physiology of PVS, we examine the latest technological developments to quantitatively analyze the structure and function of PVS in humans with MRI. We describe the applications, advantages, and limitations of these methods, providing guidance and suggestions on the acquisition protocols and analysis techniques that can be applied to study PVS in vivo. Finally, we review the human neuroimaging studies on PVS across the normative lifespan and in the context of neurological disorders.


Asunto(s)
Sistema Glinfático , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sistema Glinfático/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
9.
Alzheimers Dement (Amst) ; 14(1): e12261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35382232

RESUMEN

Introduction: To describe the protocol and findings of the instrumental validation of three imaging-based biomarker kits selected by the MarkVCID consortium: free water (FW) and peak width of skeletonized mean diffusivity (PSMD), both derived from diffusion tensor imaging (DTI), and white matter hyperintensity (WMH) volume derived from fluid attenuation inversion recovery and T1-weighted imaging. Methods: The instrumental validation of imaging-based biomarker kits included inter-rater reliability among participating sites, test-retest repeatability, and inter-scanner reproducibility across three types of magnetic resonance imaging (MRI) scanners using intra-class correlation coefficients (ICC). Results: The three biomarkers demonstrated excellent inter-rater reliability (ICC >0.94, P-values < .001), very high agreement between test and retest sessions (ICC >0.98, P-values < .001), and were extremely consistent across the three scanners (ICC >0.98, P-values < .001). Discussion: The three biomarker kits demonstrated very high inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility, offering robust biomarkers suitable for future multi-site observational studies and clinical trials in the context of vascular cognitive impairment and dementia (VCID).

10.
Proc Natl Acad Sci U S A ; 119(17): e2120439119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412862

RESUMEN

Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.


Asunto(s)
Astronautas , Líquido Cefalorraquídeo , Sistema Glinfático , Vuelo Espacial , Trastornos de la Visión , Líquido Cefalorraquídeo/diagnóstico por imagen , Sistema Glinfático/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Trastornos de la Visión/líquido cefalorraquídeo , Trastornos de la Visión/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
11.
Neuroimage ; 243: 118489, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450260

RESUMEN

The amygdala is a heterogenous set of nuclei with widespread cortical connections that continues to develop postnatally with vital implications for emotional regulation. Using high-resolution anatomical and multi-shell diffusion MRI in conjunction with novel amygdala segmentation, cutting-edge tractography, and Neurite Orientation Dispersion and Density (NODDI) methods, the goal of the current study was to characterize age associations with microstructural properties of amygdala subnuclei and amygdala-related white matter connections across adolescence (N = 61, 26 males; ages of 8-22 years). We found age-related increases in the Neurite Density Index (NDI) in the lateral nucleus (LA), dorsal and intermediate divisions of the basolateral nucleus (BLDI), and ventral division of the basolateral nucleus and paralaminar nucleus (BLVPL). Additionally, there were age-related increases in the NDI of the anterior commissure, ventral amygdalofugal pathway, cingulum, and uncinate fasciculus, with the strongest age associations in the frontal and temporal regions of these white matter tracts. This is the first study to utilize NODDI to show neurite density of basolateral amygdala subnuclei to relate to age across adolescence. Moreover, age-related differences were also notable in white matter microstructural properties along the anterior commissure and ventral amydalofugal tracts, suggesting increased bilateral amygdalae to diencephalon structural connectivity. As these basolateral regions and the ventral amygdalofugal pathways have been involved in associative emotional conditioning, future research is needed to determine if age-related and/or individual differences in the development of these microstructural properties link to socio-emotional functioning and/or risk for psychopathology.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Niño , Imagen de Difusión por Resonancia Magnética , Regulación Emocional , Emociones , Femenino , Humanos , Individualidad , Masculino , Motivación , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
12.
J Clin Endocrinol Metab ; 106(11): 3196-3212, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34272858

RESUMEN

CONTEXT: Gray matter morphology in the prefrontal cortex and subcortical regions, including the hippocampus and amygdala, are affected in youth with classical congenital adrenal hyperplasia (CAH). It remains unclear if white matter connecting these aforementioned brain regions is compromised in youth with CAH. OBJECTIVE: To examine brain white matter microstructure in youth with CAH compared to controls. DESIGN: A cross-sectional sample of 23 youths with CAH due to 21-hydroxylase deficiency (12.9 ±â€…3.5 year; 61% female) and 33 healthy controls (13.1 ±â€…2.8 year; 61% female) with 3T multishell diffusion-weighted magnetic resonance brain scans. MAIN OUTCOME MEASURES: Complementary modeling approaches, including diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to examine in vivo white matter microstructure in six white matter tracts that innervate the prefrontal and subcortical regions. RESULTS: DTI showed CAH youth had lower fractional anisotropy in both the fornix and stria terminalis and higher mean diffusivity in the fornix compared to controls. NODDI modeling revealed that CAH youth have a significantly higher orientation dispersion index in the stria terminalis compared to controls. White matter microstructural integrity was associated with smaller hippocampal and amygdala volumes in CAH youth. CONCLUSIONS: These patterns of microstructure reflect less restricted water diffusion likely due to less coherency in oriented microstructure. These results suggest that white matter microstructural integrity in the fornix and stria terminalis is compromised and may be an additional related brain phenotype alongside affected hippocampus and amygdala neurocircuitry in individuals with CAH.


Asunto(s)
Hiperplasia Suprarrenal Congénita/patología , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Gris/patología , Neuroimagen/métodos , Sustancia Blanca/patología , Adolescente , Hiperplasia Suprarrenal Congénita/diagnóstico por imagen , Estudios de Casos y Controles , Estudios Transversales , Femenino , Estudios de Seguimiento , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Pronóstico , Sustancia Blanca/diagnóstico por imagen
13.
Magn Reson Med ; 86(3): 1718-1733, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33961321

RESUMEN

PURPOSE: To develop a new 3D generative adversarial network that is designed and optimized for the application of multimodal 3D neuroimaging synthesis. METHODS: We present a 3D conditional generative adversarial network (GAN) that uses spectral normalization and feature matching to stabilize the training process and ensure optimization convergence (called SC-GAN). A self-attention module was also added to model the relationships between widely separated image voxels. The performance of the network was evaluated on the data set from ADNI-3, in which the proposed network was used to predict PET images, fractional anisotropy, and mean diffusivity maps from multimodal MRI. Then, SC-GAN was applied on a multidimensional diffusion MRI experiment for superresolution application. Experiment results were evaluated by normalized RMS error, peak SNR, and structural similarity. RESULTS: In general, SC-GAN outperformed other state-of-the-art GAN networks including 3D conditional GAN in all three tasks across all evaluation metrics. Prediction error of the SC-GAN was 18%, 24% and 29% lower compared to 2D conditional GAN for fractional anisotropy, PET and mean diffusivity tasks, respectively. The ablation experiment showed that the major contributors to the improved performance of SC-GAN are the adversarial learning and the self-attention module, followed by the spectral normalization module. In the superresolution multidimensional diffusion experiment, SC-GAN provided superior predication in comparison to 3D Unet and 3D conditional GAN. CONCLUSION: In this work, an efficient end-to-end framework for multimodal 3D medical image synthesis (SC-GAN) is presented. The source code is also made available at https://github.com/Haoyulance/SC-GAN.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Atención , Imagenología Tridimensional , Neuroimagen
14.
Sci Rep ; 11(1): 3729, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580088

RESUMEN

The subiculum is the major output component of the hippocampal formation and one of the major brain structures most affected by Alzheimer's disease. Our previous work revealed a hidden laminar architecture within the mouse subiculum. However, the rotation of the hippocampal longitudinal axis across species makes it unclear how the laminar organization is represented in human subiculum. Using in situ hybridization data from the Allen Human Brain Atlas, we demonstrate that the human subiculum also contains complementary laminar gene expression patterns similar to the mouse. In addition, we provide evidence that the molecular domain boundaries in human subiculum correspond to microstructural differences observed in high resolution MRI and fiber density imaging. Finally, we show both similarities and differences in the gene expression profile of subiculum pyramidal cells within homologous lamina. Overall, we present a new 3D model of the anatomical organization of human subiculum and its evolution from the mouse.


Asunto(s)
Hipocampo/metabolismo , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Mapeo Encefálico/métodos , Bases de Datos Factuales , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Hipocampo/fisiología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Vías Nerviosas/metabolismo , Células Piramidales/metabolismo , Transcriptoma/genética
15.
Neurobiol Aging ; 99: 28-43, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422892

RESUMEN

Vascular contributions to early cognitive decline are increasingly recognized, prompting further investigation into the nature of related changes in perivascular spaces (PVS). Using magnetic resonance imaging, we show that, compared to a cognitively normal sample, individuals with early cognitive dysfunction have altered PVS presence and distribution, irrespective of Amyloid-ß. Surprisingly, we noted lower PVS presence in the anterosuperior medial temporal lobe (asMTL) (1.29 times lower PVS volume fraction in cognitively impaired individuals, p < 0.0001), which was associated with entorhinal neurofibrillary tau tangle deposition (beta (standard error) = -0.98 (0.4); p = 0.014), one of the hallmarks of early Alzheimer's disease pathology. We also observed higher PVS volume fraction in centrum semi-ovale of the white matter, but only in female participants (1.47 times higher PVS volume fraction in cognitively impaired individuals, p = 0.0011). We also observed PVS changes in participants with history of hypertension (higher in the white matter and lower in the asMTL). Our results suggest that anatomically specific alteration of the PVS is an early neuroimaging feature of cognitive impairment in aging adults, which is differentially manifested in female.


Asunto(s)
Disfunción Cognitiva/patología , Sistema Glinfático/patología , Envejecimiento/patología , Amiloide/metabolismo , Femenino , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/metabolismo , Humanos , Hipertensión/patología , Imagen por Resonancia Magnética , Masculino , Ovillos Neurofibrilares/metabolismo , Neuroimagen , Tamaño de los Órganos , Caracteres Sexuales , Sustancia Blanca/patología , Proteínas tau/metabolismo
16.
Mov Disord ; 36(5): 1126-1136, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470460

RESUMEN

BACKGROUND: The glymphatic system, including the perivascular space (PVS), plays a critical role in brain homeostasis. Although mounting evidence from Alzheimer's disease has supported the potential role of PVS in neurodegenerative disorders, its contribution in Parkinson's disease (PD) has not been fully elucidated. Although idiopathic (IPD) and familial PD (FPD) share similar pathophysiology in terms of protein aggregation, the differential impact of PVS on PD subtypes remains unknown. Our objective was to examine the differences in PVS volume fraction in IPD and FPD compared to healthy controls (HCs) and nonmanifest carriers (NMCs). METHODS: A total of 470 individuals were analyzed from the Parkinson's Progression Markers Initiative database, including (1) IPD (n = 179), (2) FPD (LRRK2 [leucine-rich repeat kinase 2], glucocerebrosidase, or α-synuclein) (n = 67), (3) NMC (n = 101), and (4) HCs (n = 84). Total PVS volume fraction (%) was compared using parcellation and quantitation within greater white matter volume at global and regional levels in all cortical and subcortical white matter. RESULTS: There was a significant increase in global and regional PVS volume fraction in PD versus non-PD, particularly in FPD versus NMC and LRRK2 FPD versus NMC. Regionally, FPD and NMC differed in the medial orbitofrontal region, as did LRRK2 FPD versus NMC. Non-PD and PD differed in the medial orbitofrontal region and the banks of the superior temporal regions. IPD and FPD differed in the cuneus and lateral occipital regions. CONCLUSIONS: Our findings support the role of PVS in PD and highlight a potentially significant contribution of PVS to the pathophysiology of FPD, particularly LRRK2. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Sistema Glinfático , Enfermedad de Parkinson , Sistema Glinfático/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo
17.
Neuroimage ; 230: 117756, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460797

RESUMEN

Head motion during MRI acquisition presents significant challenges for neuroimaging analyses. In this work, we present a retrospective motion correction framework built on a Fourier domain motion simulation model combined with established 3D convolutional neural network (CNN) architectures. Quantitative evaluation metrics were used to validate the method on three separate multi-site datasets. The 3D CNN was trained using motion-free images that were corrupted using simulated artifacts. CNN based correction successfully diminished the severity of artifacts on real motion affected data on a separate test dataset as measured by significant improvements in image quality metrics compared to a minimal motion reference image. On the test set of 13 image pairs, the mean peak signal-to-noise-ratio was improved from 31.7 to 33.3 dB. Furthermore, improvements in cortical surface reconstruction quality were demonstrated using a blinded manual quality assessment on the Parkinson's Progression Markers Initiative (PPMI) dataset. Upon applying the correction algorithm, out of a total of 617 images, the number of quality control failures was reduced from 61 to 38. On this same dataset, we investigated whether motion correction resulted in a more statistically significant relationship between cortical thickness and Parkinson's disease. Before correction, significant cortical thinning was found to be restricted to limited regions within the temporal and frontal lobes. After correction, there was found to be more widespread and significant cortical thinning bilaterally across the temporal lobes and frontal cortex. Our results highlight the utility of image domain motion correction for use in studies with a high prevalence of motion artifacts, such as studies of movement disorders as well as infant and pediatric subjects.


Asunto(s)
Artefactos , Corteza Cerebral/diagnóstico por imagen , Aprendizaje Profundo/normas , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Movimiento (Física) , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Niño , Bases de Datos Factuales/normas , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
18.
Magn Reson Imaging Clin N Am ; 29(1): 67-75, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33237016

RESUMEN

The recent Food and Drug Administration approval of 7 T MR imaging scanners for clinical use has introduced the possibility to study the brain not only in physiologic but also in pathologic conditions at ultrahigh field (UHF). Because UHF MR imaging offers higher signal-to-noise ratio and spatial resolution compared with lower field clinical scanners, the benefits of UHF MR imaging are particularly evident for imaging small anatomic structures, such as the cerebral perivascular spaces (PVS). In this article, the authors describe the application of UHF MR imaging for the investigation of PVS.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/fisiopatología , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/fisiopatología , Imagen por Resonancia Magnética/métodos , Humanos , Relación Señal-Ruido
19.
J Cereb Blood Flow Metab ; 41(7): 1563-1578, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33183133

RESUMEN

The analysis of cerebral perivascular spaces (PVS) using magnetic resonance imaging (MRI) allows to explore in vivo their contributions to neurological disorders. To date the normal amount and distribution of PVS in healthy human brains are not known, thus hampering our ability to define with confidence pathogenic alterations. Furthermore, it is unclear which biological factors can influence the presence and size of PVS on MRI. We performed exploratory data analysis of PVS volume and distribution in a large population of healthy individuals (n = 897, age = 28.8 ± 3.7). Here we describe the global and regional amount of PVS in the white matter, which can be used as a reference for clinicians and researchers investigating PVS and may help the interpretation of the structural changes affecting PVS in pathological states. We found a relatively high inter-subject variability in the PVS amount in this population of healthy adults (range: 1.31-14.49 cm3). The PVS volume was higher in older and male individuals. Moreover, we identified body mass index, time of day, and genetics as new elements significantly affecting PVS in vivo under physiological conditions, offering a valuable foundation to future studies aimed at understanding the physiology of perivascular flow.


Asunto(s)
Índice de Masa Corporal , Encéfalo/anatomía & histología , Sistema Glinfático/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Sustancia Blanca/anatomía & histología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Tiempo
20.
Neuroimage ; 221: 117128, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673745

RESUMEN

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Adulto , Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/instrumentación , Neuroimagen/normas , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...