Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Neurol ; 30(5): 1256-1261, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705320

RESUMEN

BACKGROUND AND PURPOSE: The biallelic repeat expansion (AAGGG)exp in the replication factor C subunit 1 gene (RFC1) is a frequent cause of cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) as well as late-onset ataxia. The clinical spectrum of RFC1 disease has expanded since the first identification of biallelic (AAGGG)exp and includes now various nonclassical phenotypes. Biallelic (AAGGG)exp in RFC1 in patients with clinically confirmed Parkinson's disease (PD) has recently been found. METHODS: A nationwide cohort of 273 Finnish patients with early-onset PD was examined for the biallelic intronic expansion in RFC1. The expansion (AAGGG)exp was first screened using extra long polymerase chain reactions (Extra Large-PCRs) and flanking multiplex PCR. The presence of biallelic (AAGGG)exp was then confirmed by repeat-primed PCR and, finally, the repeat length was determined by long-read sequencing. RESULTS: Three patients were found with the biallelic (AAGGG)exp in RFC1 giving a frequency of 1.10% (0.23%-3.18%; 95% confidence interval). The three patients fulfilled the diagnostic criteria of PD, none of them had ataxia or neuropathy, and only one patient had a mild vestibular dysfunction. The age at onset of PD symptoms was 40-48 years and their disease course had been unremarkable apart from the early onset. CONCLUSIONS: Our results suggest that (AAGGG)exp in RFC1 is a rare cause of early-onset PD. Other populations should be examined in order to determine whether our findings are specific to the Finnish population.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Parkinson , Enfermedades del Sistema Nervioso Periférico , Humanos , Ataxia , Ataxia Cerebelosa/genética , Enfermedad de Parkinson/genética , Fenotipo
2.
Mol Neurodegener ; 17(1): 48, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841044

RESUMEN

BACKGROUND: Parkinson's disease (PD) is genetically associated with the H1 haplotype of the MAPT 17q.21.31 locus, although the causal gene and variants underlying this association have not been identified. METHODS: To better understand the genetic contribution of this region to PD and to identify novel mechanisms conferring risk for the disease, we fine-mapped the 17q21.31 locus by constructing discrete haplotype blocks from genetic data. We used digital PCR to assess copy number variation associated with PD-associated blocks, and used human brain postmortem RNA-seq data to identify candidate genes that were then further investigated using in vitro models and human brain tissue. RESULTS: We identified three novel H1 sub-haplotype blocks across the 17q21.31 locus associated with PD risk. Protective sub-haplotypes were associated with increased LRRC37A/2 copy number and expression in human brain tissue. We found that LRRC37A/2 is a membrane-associated protein that plays a role in cellular migration, chemotaxis and astroglial inflammation. In human substantia nigra, LRRC37A/2 was primarily expressed in astrocytes, interacted directly with soluble α-synuclein, and co-localized with Lewy bodies in PD brain tissue. CONCLUSION: These data indicate that a novel candidate gene, LRRC37A/2, contributes to the association between the 17q21.31 locus and PD via its interaction with α-synuclein and its effects on astrocytic function and inflammatory response. These data are the first to associate the genetic association at the 17q21.31 locus with PD pathology, and highlight the importance of variation at the 17q21.31 locus in the regulation of multiple genes other than MAPT and KANSL1, as well as its relevance to non-neuronal cell types.


Asunto(s)
Enfermedad de Parkinson , Astrocitos/patología , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Polimorfismo de Nucleótido Simple , alfa-Sinucleína/genética , Proteínas tau/genética
3.
NPJ Parkinsons Dis ; 8(1): 6, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013364

RESUMEN

An intronic expansion (AAGGG)exp in the RFC1 gene has recently been shown to cause recessively inherited cerebellar ataxia, neuropathy, and vestibular areflexia syndrome and, furthermore, a few patients with ataxia and parkinsonism have been reported. We investigated 569 Finnish patients with medicated parkinsonism for RFC1 and found biallelic (AAGGG)exp in three non-consanguineous patients with clinically confirmed Parkinson's disease without ataxia suggesting that RFC1-related disorders include Parkinson's disease as well.

4.
BMC Neurol ; 21(1): 382, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600502

RESUMEN

BACKGROUND: The genetics of cerebellar ataxia is complex. Hundreds of causative genes have been identified, but only a few cause more than single cases. The spectrum of ataxia-causing genes differs considerably between populations. The aim of the study was to investigate the molecular epidemiology of ataxia in the Finnish population. PATIENTS AND METHODS: All patients in hospital database were reviewed for the diagnosis of unspecified ataxia. Acquired ataxias and nongenetic ataxias such as those related to infection, trauma or stroke were excluded. Sixty patients with sporadic ataxia with unknown etiology and 36 patients with familial ataxia of unknown etiology were recruited in the study. Repeat expansions in the SCA genes (ATXN1, 2, 3, 7, 8/OS, CACNA1A, TBP), FXN, and RFC1 were determined. Point mutations in POLG, SPG7 and in mitochondrial DNA (mtDNA) were investigated. In addition, DNA from 8 patients was exome sequenced. RESULTS: A genetic cause of ataxia was found in 33 patients (34.4%). Seven patients had a dominantly inherited repeat expansion in ATXN8/OS. Ten patients had mitochondrial ataxia resulting from mutations in nuclear mitochondrial genes POLG or RARS2, or from a point mutation m.8561C > G or a single deletion in mtDNA. Interestingly, five patients were biallelic for the recently identified pathogenic repeat expansion in RFC1. All the five patients presented with the phenotype of cerebellar ataxia, neuropathy, and vestibular areflexia (CANVAS). Moreover, screening of 54 patients with Charcot-Marie-Tooth neuropathy revealed four additional patients with biallelic repeat expansion in RFC1, but none of them had cerebellar symptoms. CONCLUSIONS: Expansion in ATXN8/OS results in the majority of dominant ataxias in Finland, while mutations in RFC1 and POLG are the most common cause of recessive ataxias. Our results suggest that analysis of RFC1 should be included in the routine diagnostics of idiopathic ataxia and Charcot-Marie-Tooth polyneuropathy.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Finlandia/epidemiología , Humanos , Epidemiología Molecular , Proteína de Replicación C/genética
5.
Ann Neurol ; 90(1): 35-42, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33901317

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average ~ 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner. METHODS: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases. RESULTS: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (~ 20%). INTERPRETATION: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients. ANN NEUROL 2021;90:41-48.


Asunto(s)
Predisposición Genética a la Enfermedad , Genotipo , Enfermedad de Parkinson/genética , Caracteres Sexuales , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
6.
Brain ; 143(1): 234-248, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31755958

RESUMEN

Parkinson's disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson's disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson's disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson's disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson's disease cases, 13 431 Parkinson's disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson's disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson's disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson's disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson's disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.


Asunto(s)
Catepsina B/genética , Glucosilceramidasa/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Penetrancia , alfa-Sinucleína/genética , Edad de Inicio , Estudios de Casos y Controles , Catepsina B/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Glucosilceramidasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad por Cuerpos de Lewy/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Factores de Riesgo , Secuenciación Completa del Genoma , alfa-Sinucleína/metabolismo
7.
Sci Rep ; 9(1): 18865, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827228

RESUMEN

Variants associated with Parkinson's disease (PD) have generally a small effect size and, therefore, large sample sizes or targeted analyses are required to detect significant associations in a whole exome sequencing (WES) study. Here, we used protein-protein interaction (PPI) information on 36 genes with established or suggested associations with PD to target the analysis of the WES data. We performed an association analysis on WES data from 439 Finnish PD subjects and 855 controls, and included a Finnish population cohort as the replication dataset with 60 PD subjects and 8214 controls. Single variant association (SVA) test in the discovery dataset yielded 11 candidate variants in seven genes, but the associations were not significant in the replication cohort after correction for multiple testing. Polygenic risk score using variants rs2230288 and rs2291312, however, was associated to PD with odds ratio of 2.7 (95% confidence interval 1.4-5.2; p < 2.56e-03). Furthermore, an analysis of the PPI network revealed enriched clusters of biological processes among established and candidate genes, and these functional networks were visualized in the study. We identified novel candidate variants for PD using a gene prioritization based on PPI information, and described why these variants may be involved in the pathogenesis of PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas , Femenino , Finlandia , Humanos , Masculino , Secuenciación del Exoma
8.
Lancet Neurol ; 18(12): 1091-1102, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31701892

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. METHODS: We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. FINDINGS: Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10-7). INTERPRETATION: These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. FUNDING: The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources).


Asunto(s)
Bases de Datos Genéticas , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Factores de Riesgo
9.
Mov Disord ; 34(6): 866-875, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30957308

RESUMEN

BACKGROUND: Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES: To identify the genetic determinants of PD age at onset. METHODS: Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS: We estimated that the heritability of PD age at onset attributed to common genetic variation was ∼0.11, lower than the overall heritability of risk for PD (∼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS: Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Edad de Inicio , Sitios Genéticos , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glucosilceramidasa/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
10.
Parkinsonism Relat Disord ; 45: 39-43, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29029963

RESUMEN

INTRODUCTION: Variation contributing to the risk of Parkinson's disease (PD) has been identified in several genes and at several loci including GBA, SMPD1, LRRK2, POLG1, CHCHD10 and MAPT, but the frequencies of risk variants seem to vary according to ethnic background. Our aim was to analyze how variation in these genes contributes to PD in the Finnish population. METHODS: The subjects consisted of 527 Finnish patients with early-onset PD, 325 patients with late-onset PD and 403 population controls. We screened for known genetic risk variants in GBA, SMPD1, LRRK2, POLG1, CHCHD10 and MAPT. In addition, DNA from 225 patients with early-onset Parkinson's disease was subjected to whole exome sequencing (WES). RESULTS: We detected a significant difference in the length variation of the CAG repeat in POLG1 between patients with early-onset PD compared to controls. The p.N370S and p.L444P variants in GBA contributed to a relative risk of 3.8 in early-onset PD and 2.5 in late-onset PD. WES revealed five variants in LRRK2 and SMPD1 that were found in the patients but not in the Finnish ExAC sequences. These are possible risk variants that require further confirmation. The p.G2019S variant in LRRK2, common in North African Arabs and Ashkenazi Jews, was not detected in any of the 849 PD patients. CONCLUSIONS: The POLG1 CAG repeat length variation and the GBA p.L444P variant are associated with PD in the Finnish population.


Asunto(s)
ADN Polimerasa gamma/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , beta-Glucosidasa/genética , Adulto , Edad de Inicio , Anciano , Femenino , Finlandia , Variación Genética , Genotipo , Glucosilceramidasa , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
11.
Neurobiol Aging ; 53: 195.e7-195.e10, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28256260

RESUMEN

Several genes and risk factors are associated with Parkinson's disease (PD). Although many of the genetic markers belong to a common pathway, a unifying pathogenetic mechanism is yet to be found. Also, missing heritability analyses have estimated that only part of the genetic influence contributing to PD has been found. Here, we carried out whole-exome sequencing (WES) on 438 Finnish patients with early-onset PD. We also reanalyzed previous data from genome-wide association studies (GWAS) on the same cohort. Variants in the CEL gene/locus were associated with PD in both GWAS and WES analysis. Exome-wide gene-based association tests also identified the MPHOSPH10, TAS2R19, and SERPINA1 genes in the discovery data set (p < 2.5E-6). MPHOSPH10 had estimated odds ratio (OR) of 1.53, and the rs141620200 variant in SERPINA1 had OR of 1.27. We identified several candidate genes, but further investigation is required to determine the role of these genes in PD.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Estudios de Cohortes , Finlandia , Humanos , Fosfoproteínas/genética , Ribonucleoproteínas/genética , alfa 1-Antitripsina/genética
12.
Parkinsonism Relat Disord ; 21(1): 46-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25466405

RESUMEN

OBJECT: To estimate the prevalence of Huntington's disease (HD) in Finland. METHODS: Persons diagnosed with HD from 1987 to 2010 were identified in the national registers and hospital records of the identified patients, and death certificates of the deceased subjects were obtained. Results of genetic analyses were obtained from the two national laboratories. RESULTS: Following the discovery of the Huntingtin gene (HTT), the rate of new diagnoses of HD has increased in Finland. We ascertained 207 patients with HD, 114 of whom were alive on 31 December, 2010 suggesting a minimum estimate of point prevalence of 2.12/100,000. The age at the time of diagnosis was 52.6 ± 12.1 years (mean ± standard deviation) and the duration of the disease was 8.5 ± 4.4 years among deceased patients. The length of the CAG repeats in the affected allele was 43.3 ± 3.5 repeats and the length was inversely correlated with the age at diagnosis (ß = -0.73, p < 0.001). The number of diagnoses varied regionally, whereas the repeat length did not. The frequency of the high risk HTT haplogroup A was 39% in Finnish chromosomes abstracted from the 1000 Genomes database compared to 53% in other European samples (p = 0.024). CONCLUSIONS: The annual rate of HD diagnoses and the age at diagnosis have increased. The prevalence of HD in the Finnish population is lower than that of other Caucasian populations, partly explained by the low frequency of HTT haplogroup A among the Finns.


Asunto(s)
Enfermedad de Huntington/epidemiología , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Femenino , Finlandia/epidemiología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Prevalencia , Estudios Retrospectivos , Estadísticas no Paramétricas , Expansión de Repetición de Trinucleótido/genética
13.
Mol Vis ; 16: 1399-414, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20680098

RESUMEN

PURPOSE: The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. Recently, p62/sequestosome 1 (p62) has been shown to be a key player linking the proteasomal and lysosomal clearance systems. In the present study, the functional roles of p62 and HSP70 were evaluated in conjunction with proteasome inhibitor-induced autophagy in human RPE cells (ARPE-19). METHODS: The p62, HSP70, and ubiquitin protein levels and localization were analyzed by western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. The p62 and HSP70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. RESULTS: Proteasome inhibition evoked the accumulation of perinuclear aggregates that strongly colocalized with p62 and HSP70. The p62 perinuclear accumulation was time- and concentration-dependent after MG-132 proteasome inhibitor loading. The silencing of p62, rather than Hsp70, evoked suppression of autophagy, when related to decreased LC3-II levels after bafilomycin treatment. In addition, the p62 silencing decreased the ubiquitination level of the perinuclear aggregates. Recently, we showed that hsp70 mRNA depletion increased cell death in ARPE-19 cells. Here, we demonstrate that p62 mRNA silencing has similar effects on cellular viability. CONCLUSIONS: Our findings open new avenues for understanding the mechanisms of proteolytic processes in retinal cells, and could be useful in the development of novel therapies targeting p62 and HSP70.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Leupeptinas/farmacología , Inhibidores de Proteasoma , Epitelio Pigmentado de la Retina/citología , Western Blotting , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...