Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968157

RESUMEN

The study of transitions between polymorphic phases is a less investigated chapter of the widely studied book of polymorphism. In this paper, we discuss the phase behavior of a new compound that has been rationally designed to show frustration of H-bonds for the strong amide N-H donor, which cannot be involved in H-bonding nor in van der Waals interactions. The compound (ImB) is a showcase of almost all possible cases of transitions between polymorphs [monotropic/enantiotropic, fast/slow, diffusive/displacive, and single-crystal-to-single-crystal (SCSC)] and of relation between polymorphs with different Z'. Six crystal phases (I, II, III, IV, V, and VI) were identified for it with five crystal-crystal transitions. Two transitions are reversible/SCSC/fast. Of the three monotropic transitions, all non-SCSC, one is slow, and the others are fast. Of the two enantiotropic SCSC transitions, one does not exhibit undercooling, while the other shows strong undercooling. Phase III, with Z' = 6, is stable at room temperature between phase II (Z' = 1), stable at high temperature, and phase IV (Z' = 2), stable at low temperature. All six polymorphs are based on the same O-H···O═C H-bonding synthon, which produces infinite chains in five polymorphs and ring tetramers in one. The sequence of reversible SCSC transitions IV ⇆ III ⇆ II involves a remarkable ping pong of the symmetry rules by which H-bonded chains are built. Based on all of this, a possible roadmap for prediction of SCSC transitions in crystals is shortly outlined.

2.
Cryst Growth Des ; 24(8): 3256-3268, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659660

RESUMEN

The aim of this work is to shed light on the polymorphism of xanthones, a class of oxygenated molecules well known for their bioactivity, including antioxidant, anticancer, and anti-inflammatory effects. Understanding the polymorphism of xanthones can enable the design of novel solid products for pharmaceutical, nutraceutical, and agrochemical applications. Prior to this work, two entries accounting for different space groups were deposited for 9-xanthone in the Cambridge Structure Database (CSD): an orthorhombic P212121 and a monoclinic P21 structure solved at room and low temperatures, respectively. However, the very high similarity between these two structures and the lack of clear differences in their physical properties (e.g., thermal behavior) suggested the possibility of the existence of only one crystal structure. In fact, the differences shown in the literature data might be related to the chosen operating parameters, as well as the instrumental resolution of the single-crystal X-ray diffraction experiments. In the work presented here, the ambiguity in the polymorphism of xanthone is investigated using thermal analysis, powder and synchrotron single-crystal XRD, and optical microscopy. Additionally, a workflow for the correct identification of twinned crystal structures, which can be applied to other polymorphic systems, is presented. Such workflow combines the collection of a large data set of high-resolution diffraction patterns using synchrotron radiation with the use of principal component analysis, a dimensionality reduction technique, for a quick and effective identification of phase transitions happening during the data collection. Crystallization experiments were designed to promote the formation of different crystal structures of xanthone that were recrystallized based on past literature and beyond.

3.
Food Res Int ; 177: 113864, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225135

RESUMEN

Cocoa butter equivalents (CBE) are mixtures of triglycerides from multiple sources (e.g., sunflower oil, mango kernel and sal), which resemble cocoa butter (CB) in both physical and chemical properties. Despite being widely used to replace CB in chocolate products, the crystallization behavior of many CBEs is still poorly understood. The aim of this work was to develop a fundamental understanding, at the molecular level, of the crystallization behavior of selected CBEs, and compare it with that of CB. Chromatography was used to determine the composition of CBEs, in terms of fatty acids and triacylglycerides (TAGs), while their thermodynamic behavior and crystallization kinetics were studied using polarized microscopy, differential calorimetry and three different synchrotron X-ray scattering setups. CBEs of different origin and chemical composition (e.g., different ratios of the main CB TAGs, namely POP, SOS and POS) crystallized in different polymorphs and with different kinetics of nucleation, growth and polymorphic transformation. SOS rich CBEs presented showed more polymorphs than CB and POP rich samples; whereas, CBEs with high concentration of POP showed slow kinetic of polymorphic transformation towards the stable ß(3L) form. Additionally, it was observed that the presence of small amounts (<1% w/w) of specific TAGs, such as OOO, PPP or SSS, could significantly affect the crystallization behavior of CBEs and CBs in terms of kinetics of polymorphic transformation and number of phases detected (multiple high melting ß(2L) polymorphs were identified in all samples studied). Finally, it was found that, regardless of the CBE composition, the presence of shear could promote the formation of stable ß polymorphs over metastable ß' and γ forms, and reduced the size of the crystal agglomerates formed due to increased secondary nucleation.


Asunto(s)
Ácidos Grasos , Sincrotrones , Cristalización , Rayos X , Triglicéridos/química , Ácidos Grasos/análisis
4.
Eur J Pharm Sci ; 192: 106650, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995834

RESUMEN

This study investigates the correlation between the structural and release properties of solid lipid microparticles (MPs) of tristearin containing 5 % w/w of four different liquid additives used as crystal modifiers: isopropyl myristate (IM), ethyl oleate (EO), oleic acid (OA) and medium chain triglycerides (MCT). All additives accelerated the conversion of the unstable α-form of tristearin, formed after the MPs manufacturing, to the stable ß-polymorph and the transformation was completed within 24 h (for IM and EO) or 48 h (for OA and MCT). The kinetic of polymorphic transition at 25 °C was investigated by simultaneous synchrotron SAXS/WAXS and DSC analysis after melting and subsequent cooling of the lipid mixture. After crystallization in the α-phase, additives accelerate the solid-solid phase transformation to ß-tristearin. SAXS data showed that two types of structural modifications occurred on MPs during storage: compaction of the crystal packing (slight decrease in lamellar thickness) and crystal growth (increased number of stacked lipid lamellae). The release behavior of a model hydrophilic drug (caffeine) at two different amounts (15 % and 30 %) from MPs was studied in water and biorelevant media simulated the gastric and intestinal environment. It was particularly significant that the introduction of IM, EO and MCT were able to prolong the drug release in water, passing from a diffusion-based Higuchi kinetics to a perfect zero-order kinetic. Moreover, the overall release profiles were higher in biorelevant media, where erosion/digestion of MPs was observed. After 6 months, a moderate but statistically significant change in release profile was observed for the MPs with IM and EO, which can be correlated with the time-dependent structural alterations (i.e. larger average crystallite size) of these formulations; while MPs with OA or MCT displayed stable release profiles. These findings help to understand the correlation between release behavior, polymorphism and supramolecular-level structural modification of lipid formulations containing crystal modifiers.


Asunto(s)
Agua , Liberación de Fármacos , Dispersión del Ángulo Pequeño , Tamaño de la Partícula , Difracción de Rayos X
5.
Cryst Growth Des ; 23(8): 6034-6045, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37547879

RESUMEN

Quercetin, a naturally occurring bioflavonoid substance widely used in the nutraceutical and food industries, exists in various solid forms that can have different physicochemical properties, thus impacting this compound's performance in various applications. In this work, we will clarify the complex solid-form landscape of this molecule. Two elusive isostructural solvates of quercetin were obtained from ethanol and methanol. The obtained crystals were characterized experimentally, but the crystallographic structure could not be solved due to their high instability. Nevertheless, the desolvated structure resulting from a high-temperature treatment (or prolonged storage at ambient conditions) of both these two labile crystals was characterized and solved via powder X-ray diffraction and solid-state nuclear magnetic resonance (SSNMR). This anhydrous crystal structure was compared with another anhydrous quercetin form obtained in our previous work, indicating that, at least, two different anhydrous polymorphs of quercetin exist. Navigating the solid-form landscape of quercetin is essential to ensure accurate control of the functional properties of food, nutraceutical, or pharmaceutical products containing crystal forms of this substance.

6.
Ind Eng Chem Res ; 62(28): 11067-11081, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37484628

RESUMEN

Fine chemicals produced via batch crystallization with properties dependent on the crystal size distribution require precise control of supersaturation, which drives the evolution of crystal size over time. Model predictive control (MPC) of supersaturation using a mechanistic model to represent the behavior of a crystallization process requires less experimental time and resources compared with fully empirical model-based control methods. Experimental characterization of the hexamine-ethanol crystallization system was performed in order to collect the parameters required to build a one-dimensional (1D) population balance model (PBM) in gPROMS FormulatedProducts software (Siemens-PSE Ltd.). Analysis of the metastable zone width (MSZW) and a series of seeded batch cooling crystallizations informed the suitable process conditions selected for supersaturation control experiments. The gPROMS model was integrated with the control software PharmaMV (Perceptive Engineering Ltd.) to create a digital twin of the crystallizer. Simulated batch crystallizations were used to train two statistical MPC blocks, allowing for in silico supersaturation control simulations to develop an effective control strategy. In the supersaturation set-point range of 0.012-0.036, the digital twin displayed excellent performance that would require minimal controller tuning to steady out any instabilities. The MPC strategy was implemented on a physical 500 mL crystallizer, with the simulated solution concentration replaced by in situ measurements from calibrated attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Physical supersaturation control performance was slightly more unstable than the in silico tests, which is consistent with expected disturbances to the heat transfer, which were not specifically modeled in simulations. Overall, the level of supersaturation control in a real crystallizer was found to be accurate and precise enough to consider future adaptations to the MPC strategy for more advanced control objectives, such as the crystal size.

7.
Commun Chem ; 6(1): 84, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120643

RESUMEN

The development of efficient CO2 capture and utilization technologies driven by renewable energy sources is mandatory to reduce the impact of climate change. Herein, seven imidazolium-based ionic liquids (ILs) with different anions and cations were tested as catholytes for the CO2 electrocatalytic reduction to CO over Ag electrode. Relevant activity and stability, but different selectivities for CO2 reduction or the side H2 evolution were observed. Density functional theory results show that depending on the IL anions the CO2 is captured or converted. Acetate anions (being strong Lewis bases) enhance CO2 capture and H2 evolution, while fluorinated anions (being weaker Lewis bases) favour the CO2 electroreduction. Differently from the hydrolytically unstable 1-butyl-3-methylimidazolium tetrafluoroborate, 1-Butyl-3-Methylimidazolium Triflate was the most promising IL, showing the highest Faradaic efficiency to CO (>95%), and up to 8 h of stable operation at high current rates (-20 mA & -60 mA), which opens the way for a prospective process scale-up.

8.
Cryst Growth Des ; 22(10): 6120-6130, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36217415

RESUMEN

Milk fat has more than 200 triacylglycerols (TAGs), which play a pivotal role in its crystallization behavior. Asymmetrical TAGs containing short butyryl chains contribute to a significant portion of milk fat TAGs. This work aims to elucidate the crystallization behavior of asymmetrical milk fat TAGs by employing the pure compound of 1-butyryl 2-stearoyl 3-palmitoyl-glycerol (BuSP). The structural evolution of BuSP after being cooled down to 20 °C from the melt is evaluated by small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC). The temporal structural observation shows that BuSP crystallizes into the α-form with short and long spacings of 4.10 and 56.9 Å, respectively, during the first hour of isothermal hold at 20 °C. The polymorphic transformation of the α to ß' phase occurred after 4 h of isothermal hold, and the ß'- to α-form fraction ratio was about 70:30 at the end of the isothermal experiment (18 h). Pure ß'-form X-ray patterns are obtained from the BuSP powder with short spacings of 4.33, 4.14, and 3.80 Å, while the long spacing of 51.2 Å depicts a three-chain-length lamellar structure with a tilt angle of 32°. Corresponding DSC measurements display that BuSP crystallizes from the melt at 29.1 °C, whereas the melting of α- and ß'-forms was recorded at 30.3 and 47.8 °C, respectively. In the absence of the ß-form, the ß'-polymorph is the most stable observed form in BuSP. This work exemplarily explains the crystallization behavior of asymmetrical milk fat TAGs and thus provides new insights into their role in overall milk fat crystallization.

9.
Cryst Growth Des ; 22(10): 6103-6113, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36217418

RESUMEN

The surface energy and surface chemistry of a crystal are of great importance when designing particles for a specific application, as these will impact both downstream manufacturing processes as well as final product quality. In this work, the surface properties of two different quercetin solvates (quercetin dihydrate and quercetin DMSO solvate) were studied using molecular (synthonic) modeling and experimental techniques, including inverse gas chromatography (IGC) and contact angle measurements, to establish a relationship between crystal structure and surface properties. The attachment energy model was used to predict morphologies and calculate surface properties through the study of their growth synthons. The modeling results confirmed the surface chemistry anisotropy for the two forms. For quercetin dihydrate, the {010} facets were found to grow mainly by nonpolar offset quercetin-quercetin stacking interactions, thus being hydrophobic, while the {100} facets were expected to be hydrophilic, growing by a polar quercetin-water hydrogen bond. For QDMSO, the dominant facet {002} grows by a strong polar quercetin-quercetin hydrogen bonding interaction, while the second most dominant facet {011} grows by nonpolar π-π stacking interactions. Water contact angle measurements and IGC confirmed a greater overall surface hydrophilicity for QDMSO compared to QDH and demonstrated surface energy heterogeneity for both structures. This work shows how synthonic modeling can help in the prediction of the surface nature of crystalline particles and guide the choice of parameters that will determine the optimal crystal form and final morphology for targeted surface properties, for example, the choice of crystallization conditions, choice of solvent, or presence of additives or impurities, which can direct the crystallization of a specific crystal form or crystal shape.

10.
Cryst Growth Des ; 22(2): 1371-1383, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140548

RESUMEN

Natural sugar molecules such as xylose and arabinose exhibit sweetness profiles similar to sucrose, which makes them a valuable alternative in low-calorie foods as well as excipients or cocrystallization agents in pharmaceutical formulations. Xylose and arabinose are also chiral diastereomers that can exhibit specific crystallization behavior. In this work, the solid-state landscapes of the chiral pairs of both xylose and arabinose have been investigated to determine whether racemic compounds or conglomerates are formed. Furthermore, single crystals of xylose and arabinose have been grown and characterized by X-ray diffraction and optical microscopy to study their crystallographic properties and relate them to the crystallization behavior. Differential scanning calorimetry (DSC) measurements were used to determine the phase diagrams of the two analyzed chiral systems. The solubilities of the different solid forms of xylose and arabinose were measured in different solvent mixtures by a thermogravimetric method. An analysis was conducted to assess the main thermodynamic parameters and the activity coefficients of the compounds in solution. Finally, slurry experiments in a 50:50 w/w ethanol/water solvent have also been performed to determine the relative stability of each solid form and the kinetics of transformation in this solvent mixture. It was found that dl-arabinose crystallizes as a stable racemic compound, which transforms quickly from its constituent enantiomers when in solution; whereas d- and l-xylose molecules crystallize separately as a conglomerate.

11.
Langmuir ; 38(4): 1638-1650, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050635

RESUMEN

Oleofoams are a novel, versatile, and biocompatible soft material that finds application in drug, cosmetic or nutraceuticals delivery. However, due to their temperature-sensitive and opaque nature, the characterization of oleofoams' microstructure is challenging. Here, synchrotron X-ray microcomputed tomography and radiography are applied to study the microstructure of a triglyceride-based oleofoam. These techniques enable non-destructive, quantitative, 3D measurements of native samples to determine the thermodynamic and kinetic behavior of oleofoams at different stages of their life cycle. During processing, a constant bubble size distribution is reached after few minutes of shearing, while the number of bubbles incorporated keeps increasing until saturation of the continuous phase. Low amounts of solid triglycerides in oleofoams allow faster aeration and a more homogeneous microstructure but lower thermodynamic stability, with bubble disproportionation and shape relaxation over time. Radiography shows that heating causes Ostwald ripening and coalescence of bubbles, with an increase of their diameter and sphericity.


Asunto(s)
Sincrotrones , Temperatura , Microtomografía por Rayos X/métodos
12.
Adv Colloid Interface Sci ; 279: 102154, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32330733

RESUMEN

Over the last two decades, the development and production of innovative, customer-tailored food products with enhanced health benefits have seen major advances. However, the manufacture of edible materials with tuned physical and organoleptic properties requires a good knowledge of food microstructure and its relationship to the macroscopic properties of the final food product. Food products are complex materials, often consisting of multiple phases. Furthermore, each phase usually contains a variety of biological macromolecules, such as carbohydrates, proteins and lipids, as well as water droplets and gas bubbles. Micronutrients, such as vitamins and minerals, might also play an important role in determining and engineering food microstructure. Considering this complexity, highly advanced physio-chemical techniques are required for characterizing the microstructure of food systems prior to, during and after processing. Fast, in situ techniques are also essential for industrial applications. Due to the wide variety of instruments and methods, the scope of this paper is focused only on the latest advances of selected food characterization techniques, with emphasis on soft, multi-phasic food materials.


Asunto(s)
Análisis de los Alimentos , Animales , Carbohidratos/análisis , Humanos , Lípidos/análisis , Minerales/análisis , Proteínas/análisis , Vitaminas/análisis , Agua/análisis
13.
Foods ; 8(6)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159443

RESUMEN

Unlike solid food, texture descriptors in liquid food are scarce, and they are frequently reduced to the term viscosity. However, in wines, apart from viscosity, terms, such as astringency, body, unctuosity and density, help describe their texture, relating the complexity and balance among their chemical components. Yet there is uncertainty about which wine components (and their combinations) cause each texture sensation and if their instrumental assessment is possible. Therefore, the aim of the present work was to study the effect of wine texture on its main components, when interacting with saliva. This was completed by using instrumental measurements of density and viscosity, and by using two types of panels (trained and expert). For that, six different model-wine formulations were prepared by adding one or multiple wine components: ethanol, mannoproteins, glycerol, and tannins to a de-alcoholised wine. All formulations were mixed with fresh human saliva (1:1), and their density and rheological properties were measured. Although there were no statistical differences, body perception was higher for samples with glycerol and/or mannoproteins, this was also correlated with density instrumental measurements (R = 0.971, p = 0.029). The viscosity of samples with tannins was the highest due to the formation of complexes between the model-wine and salivary proteins. This also provided astringency, therefore correlating viscosity and astringency feelings (R = 0.855, p = 0.030). No correlation was found between viscosity and body perception because of the overlapping of the phenolic components. Overall, the present results reveal saliva as a key factor when studying the wine texture through instrumental measurements (density and viscosity).

14.
Pharmaceutics ; 10(1)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364167

RESUMEN

In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM); and particle vision and measurement (PVM) were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.

15.
Cryst Growth Des ; 17(12): 6692-6702, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29234241

RESUMEN

Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 µm and was controlled by the PRX concentration in the feed solution (15-25 g L-1), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L-1 PRX solution through a stainless-steel membrane with a pore size of 10 µm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 µm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

16.
Cryst Growth Des ; 17(4): 1695-1706, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28867966

RESUMEN

Crystal size and shape can be manipulated to enhance the qualities of the final product. In this work the steady-state shape and size of succinic acid crystals, with and without a polymeric additive (Pluronic P123) at 350 mL, scale is reported. The effect of the amplitude of cycles as well as the heating/cooling rates is described, and convergent cycling (direct nucleation control) is compared to static cycling. The results show that the shape of succinic acid crystals changes from plate- to diamond-like after multiple cycling steps, and that the time required for this morphology change to occur is strongly related to the type of cycling. Addition of the polymer is shown to affect both the final shape of the crystals and the time needed to reach size and shape steady-state conditions. It is shown how this phenomenon can be used to improve the design of the crystallization step in order to achieve more efficient downstream operations and, in general, to help optimize the whole manufacturing process.

17.
Int J Pharm ; 509(1-2): 264-278, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27260131

RESUMEN

One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing.


Asunto(s)
Cationes/química , DEAE Dextrano/química , Dextranos/química , Ibuprofeno/química , Química Farmacéutica/métodos , Cristalización/métodos , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Estabilidad de Medicamentos , Tamaño de la Partícula , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...