Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 73: 103214, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805973

RESUMEN

The chaperone protein EROS ("Essential for Reactive Oxygen Species") was recently discovered in phagocytes. EROS was shown to regulate the abundance of the ROS-producing enzyme NADPH oxidase isoform 2 (NOX2) and to control ROS-mediated cell killing. Reactive oxygen species are important not only in immune surveillance, but also modulate physiological signaling responses in multiple tissues. The roles of EROS have not been previously explored in the context of oxidant-modulated cell signaling. Here we show that EROS plays a key role in ROS-dependent signal transduction in vascular endothelial cells. We used siRNA-mediated knockdown and developed CRISPR/Cas9 knockout of EROS in human umbilical vein endothelial cells (HUVEC), both of which cause a significant decrease in the abundance of NOX2 protein, associated with a marked decrease in RAC1, a small G protein that activates NOX2. Loss of EROS also attenuates receptor-mediated hydrogen peroxide (H2O2) and Ca2+ signaling, disrupts cytoskeleton organization, decreases cell migration, and promotes cellular senescence. EROS knockdown blocks agonist-modulated eNOS phosphorylation and nitric oxide (NO●) generation. These effects of EROS knockdown are strikingly similar to the alterations in endothelial cell responses that we previously observed following RAC1 knockdown. Proteomic analyses following EROS or RAC1 knockdown in endothelial cells showed that reduced abundance of these two distinct proteins led to largely overlapping effects on endothelial biological processes, including oxidoreductase, protein phosphorylation, and endothelial nitric oxide synthase (eNOS) pathways. These studies demonstrate that EROS plays a central role in oxidant-modulated endothelial cell signaling by modulating NOX2 and RAC1.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , NADPH Oxidasa 2 , Oxidación-Reducción , Especies Reactivas de Oxígeno , Transducción de Señal , Proteína de Unión al GTP rac1 , Humanos , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico/metabolismo , Movimiento Celular , Fosforilación , Senescencia Celular , Técnicas de Silenciamiento del Gen
2.
Free Radic Biol Med ; 217: 173-178, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565399

RESUMEN

Chemogenetics refers to experimental methods that use novel recombinant proteins that can be dynamically and uniquely regulated by specific biochemicals. Chemogenetic approaches allow the precise manipulation of cellular signaling to delineate the molecular pathways involved in both physiological and pathological disease states. Approaches utilizing yeast d-amino acid oxidase (DAAO) enable manipulation of intracellular redox metabolism through generation of hydrogen peroxide in the presence of d-amino acids and have led to the development of new and informative animal models to characterize the impact of oxidative stress in heart failure and neurodegeneration. These chemogenetic models, in which DAAO expression is regulated by different tissue-specific promoters, have led to a range of cardiac phenotypes. This review discusses chemogenetic approaches to manipulate oxidative stress in models of heart failure. These approaches provide new insights into the relationships between redox metabolism and normal and pathologic states in the heart, as well as in other diseases characterized by oxidative stress.


Asunto(s)
Insuficiencia Cardíaca , Animales , Oxidación-Reducción , Insuficiencia Cardíaca/genética , Estrés Oxidativo , Aminoácidos
4.
Curr Opin Chem Biol ; 79: 102438, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417321

RESUMEN

Chemogenetic approaches have been developed to define the mechanisms whereby the intracellular oxidant hydrogen peroxide (H2O2) modulates both physiological and pathological responses. Recombinant yeast D-amino acid oxidase (DAAO) can be exploited to modulate H2O2 in target cells and tissues. In vitro studies using cultured cells expressing recombinant DAAO have provided critical new information on the intracellular transport and metabolism of H2O2 with great temporal and spatial resolution. In contrast, in vivo studies using chemogenetic/transgenic animal models have explored the pathological effects of chronically elevated H2O2 in tissues. Coupled with transcriptomic, proteomic, and metabolomic methods, in vivo chemogenetic approaches are providing new insights into the adaptations to oxidative stress. This review of chemogenetic applications focuses on new models of heart failure and neurodegeneration that leverage in vivo chemogenetic modulation of oxidative stress in target tissues to identify new therapeutic targets.


Asunto(s)
Peróxido de Hidrógeno , Multiómica , Animales , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Proteómica , Estrés Oxidativo , Oxidación-Reducción , Aminoácidos/metabolismo
5.
J Perinatol ; 44(2): 250-256, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123799

RESUMEN

OBJECTIVE: To identify variables associated with extubation success in extremely preterm neonates extubated from invasive volume-targeted ventilation. STUDY DESIGN: We retrospectively evaluated 84 neonates ≤28 weeks' gestational age, on their first elective extubation. The primary outcome of successful extubation was defined as non-reintubation within seven days. We used multivariate logistic regression analysis. RESULTS: We identified 58 (69%) neonates (mean gestational age of 26.5 ± 1.4 weeks, birthweight 921 ± 217 g) who met the primary outcome. Female sex (OR 1.15, 95% CI 1.01-9.10), higher pre-extubation weight (OR 1.29, 95% CI 1.05-1.59), and pH (OR 2.54, 95% CI 1.54-4.19), and lower pre-extubation mean airway pressure (MAP) (OR 0.49, 95% CI 0.33-0.73) were associated with successful extubation. CONCLUSIONS: In preterm neonates, female sex, higher pre-extubation weight and pH, and lower pre-extubation MAP were predictors of successful extubation from volume-targeted ventilation. Evaluation of these variables will likely assist clinicians in selecting the optimal time for extubation in such vulnerable neonates.


Asunto(s)
Extubación Traqueal , Recien Nacido Extremadamente Prematuro , Recién Nacido , Humanos , Femenino , Lactante , Estudios Retrospectivos , Respiración Artificial , Respiración
6.
Nat Commun ; 14(1): 3094, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248315

RESUMEN

Oxidative stress is associated with cardiovascular and neurodegenerative diseases. Here we report studies of neurovascular oxidative stress in chemogenetic transgenic mouse lines expressing yeast D-amino acid oxidase (DAAO) in neurons and vascular endothelium. When these transgenic mice are fed D-amino acids, DAAO generates hydrogen peroxide in target tissues. DAAO-TGCdh5 transgenic mice express DAAO under control of the putatively endothelial-specific Cdh5 promoter. When we provide these mice with D-alanine, they rapidly develop sensory ataxia caused by oxidative stress and mitochondrial dysfunction in neurons within dorsal root ganglia and nodose ganglia innervating the heart. DAAO-TGCdh5 mice also develop cardiac hypertrophy after chronic chemogenetic oxidative stress. This combination of ataxia, mitochondrial dysfunction, and cardiac hypertrophy is similar to findings in patients with Friedreich's ataxia. Our observations indicate that neurovascular oxidative stress is sufficient to cause sensory ataxia and cardiac hypertrophy. Studies of DAAO-TGCdh5 mice could provide mechanistic insights into Friedreich's ataxia.


Asunto(s)
Ataxia de Friedreich , Ratones , Animales , Ratones Transgénicos , Cardiomegalia , Estrés Oxidativo , Ataxia/complicaciones
7.
Redox Biol ; 58: 102539, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36401888

RESUMEN

Statins have manifold protective effects on the cardiovascular system. In addition to lowering LDL cholesterol levels, statins also have antioxidant effects on cardiovascular tissues involving intracellular redox pathways that are incompletely understood. Inhibition of HMG-CoA reductase by statins not only modulates cholesterol synthesis, but also blocks the synthesis of lipids necessary for the post-translational modification of signaling proteins, including the GTPase Rac1. Here we studied the mechanisms whereby Rac1 and statins modulate the intracellular oxidant hydrogen peroxide (H2O2) via NADPH oxidase (Nox) isoforms. In live-cell imaging experiments using the H2O2 biosensor HyPer7, we observed robust H2O2 generation in human umbilical vein endothelial cells (HUVEC) following activation of cell surface receptors for histamine or vascular endothelial growth factor (VEGF). Both VEGF- and histamine-stimulated H2O2 responses were abrogated by siRNA-mediated knockdown of Rac1. VEGF responses required the Nox isoforms Nox2 and Nox4, while histamine-stimulated H2O2 signals are independent of Nox4 but still required Nox2. Endothelial H2O2 responses to both histamine and VEGF were completely inhibited by simvastatin. In resting endothelial cells, Rac1 is targeted to the cell membrane and cytoplasm, but simvastatin treatment promotes translocation of Rac1 to the cell nucleus. The effects of simvastatin both on receptor-dependent H2O2 production and Rac1 translocation are rescued by treatment of cells with mevalonic acid, which is the enzymatic product of the HMG-CoA reductase that is inhibited by statins. Taken together, these studies establish that receptor-modulated H2O2 responses to histamine and VEGF involve distinct Nox isoforms, both of which are completely dependent on Rac1 prenylation.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , NADPH Oxidasas , Humanos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Histamina/farmacología , Simvastatina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Isoformas de Proteínas/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
8.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142826

RESUMEN

Pulmonary arterial hypertension (PAH) is a serious, progressive, and often fatal disease that is in urgent need of improved therapies that treat it. One of the remaining therapeutic challenges is the increasingly recognized skeletal muscle dysfunction that interferes with exercise tolerance. Here we report that in the adult rat Sugen/hypoxia (SU/Hx) model of severe pulmonary hypertension (PH), there is highly significant, almost 50%, decrease in exercise endurance, and this is associated with a 25% increase in the abundance of type II muscle fiber markers, thick sarcomeric aggregates and an increase in the levels of FoxO1 in the soleus (a predominantly type I fiber muscle), with additional alterations in the transcriptomic profiles of the diaphragm (a mixed fiber muscle) and the extensor digitorum longus (a predominantly Type II fiber muscle). In addition, soleus atrophy may contribute to impaired exercise endurance. Studies in L6 rat myoblasts have showed that myotube differentiation is associated with increased FoxO1 levels and type II fiber markers, while the inhibition of FoxO1 leads to increased type I fiber markers. We conclude that the formation of aggregates and a FoxO1-mediated shift in the skeletal muscle fiber-type specification may underlie skeletal muscle dysfunction in an experimental study of PH.


Asunto(s)
Hipertensión Pulmonar , Condicionamiento Físico Animal , Animales , Fibras Musculares de Contracción Rápida , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiología , Ratas
9.
Am J Physiol Heart Circ Physiol ; 322(3): H451-H465, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089810

RESUMEN

The failing heart is characterized by elevated levels of reactive oxygen species. We have developed an animal model of heart failure induced by chemogenetic production of oxidative stress in the heart using a recombinant adeno-associated virus (AAV9) expressing yeast d-amino acid oxidase (DAAO) targeted to cardiac myocytes. When DAAO-infected animals are fed the DAAO substrate d-alanine, the enzyme generates hydrogen peroxide (H2O2) in the cardiac myocytes, leading to dilated cardiomyopathy. However, the underlying mechanisms of oxidative stress-induced heart failure remain incompletely understood. Therefore, we investigated the effects of chronic oxidative stress on the cardiac transcriptome and metabolome. Rats infected with recombinant cardiotropic AAV9 expressing DAAO or control AAV9 were treated for 7 wk with d-alanine to stimulate chemogenetic H2O2 production by DAAO and generate dilated cardiomyopathy. After hemodynamic assessment, left and right ventricular tissues were processed for RNA sequencing and metabolomic profiling. DAAO-induced dilated cardiomyopathy was characterized by marked changes in the cardiac transcriptome and metabolome both in the left and right ventricle. Downregulated transcripts are related to energy metabolism and mitochondrial function, accompanied by striking alterations in metabolites involved in cardiac energetics, redox homeostasis, and amino acid metabolism. Upregulated transcripts are involved in cytoskeletal organization and extracellular matrix. Finally, we noted increased metabolite levels of antioxidants glutathione and ascorbate. These findings provide evidence that chemogenetic generation of oxidative stress leads to a robust heart failure model with distinct transcriptomic and metabolomic signatures and set the basis for understanding the underlying pathophysiology of chronic oxidative stress in the heart.NEW & NOTEWORTHY We have developed a "chemogenetic" heart failure animal model that recapitulates a central feature of human heart failure: increased cardiac redox stress. We used a recombinant DAAO enzyme to generate H2O2 in cardiomyocytes, leading to cardiomyopathy. Here we report striking changes in the cardiac metabolome and transcriptome following chemogenetic heart failure, similar to changes observed in human heart failure. Our findings help validate chemogenetic approaches for the discovery of novel therapeutic targets in heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Alanina/farmacología , Aminoácidos/metabolismo , Aminoácidos/farmacología , Aminoácidos/uso terapéutico , Animales , Cardiomiopatía Dilatada/metabolismo , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Peróxido de Hidrógeno/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratas , Transcriptoma
10.
Free Radic Biol Med ; 177: 360-369, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34752919

RESUMEN

Hydrogen peroxide (H2O2) is the most abundant reactive oxygen species (ROS) within mammalian cells. At low concentrations, H2O2 serves as a versatile cell signaling molecule that mediates vital physiological functions. Yet at higher concentrations, H2O2 can be a toxic molecule by promoting pathological oxidative stress in cells and tissues. Within normal cells, H2O2 is differentially distributed in a variety of subcellular locales. Moreover, many redox-active enzymes and their substrates are themselves differentially distributed within cells. Numerous reports have described the biological and biochemical consequences of adding exogenous H2O2 to cultured cells and tissues, but many of these observations are difficult to interpret: the effects of exogenous H2O2 do not necessarily replicate the cellular responses to endogenous H2O2. In recent years, chemogenetic approaches have been developed to dynamically regulate the abundance of H2O2 in specific subcellular locales. Chemogenetic approaches have been applied in multiple experimental systems, ranging from in vitro studies on the intracellular transport and metabolism of H2O2, all the way to in vivo studies that generate oxidative stress in specific organs in living animals. These chemogenetic approaches have exploited a yeast-derived d-amino acid oxidase (DAAO) that synthesizes H2O2 only in the presence of its d-amino acid substrate. DAAO can be targeted to various subcellular locales, and can be dynamically activated by the addition or withdrawal of its d-amino acid substrate. In addition, recent advances in the development of highly sensitive genetically encoded H2O2 biosensors are providing a better understanding of both physiological and pathological oxidative pathways. This review highlights several applications of DAAO as a chemogenetic tool across a wide range of biological systems, from analyses of subcellular H2O2 metabolism in cells to the development of new disease models caused by oxidative stress in vivo.


Asunto(s)
Peróxido de Hidrógeno , Estrés Oxidativo , Aminoácidos , Animales , Oxidación-Reducción , Especies Reactivas de Oxígeno
11.
Front Cardiovasc Med ; 8: 662870, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222363

RESUMEN

Background: Right ventricular (RV) performance is a key determinant of mortality in pulmonary arterial hypertension (PAH). RV failure is characterized by metabolic dysregulation with unbalanced anaerobic glycolysis, oxidative phosphorylation, and fatty acid oxidation (FAO). We previously found that acetazolamide (ACTZ) treatment modulates the pulmonary inflammatory response and ameliorates experimental PAH. Objective: To evaluate the effect of ACTZ treatment on RV function and metabolic profile in experimental PAH. Design/Methods: In the Sugen 5416/hypoxia (SuHx) rat model of severe PAH, RV transcriptomic analysis was performed by RNA-seq, and top metabolic targets were validated by RT-PCR. We assessed the effect of therapeutic administration of ACTZ in the drinking water on hemodynamics by catheterization [right and left ventricular systolic pressure (RVSP and LVSP, respectively)] and echocardiography [pulmonary artery acceleration time (PAAT), RV wall thickness in diastole (RVWT), RV end-diastolic diameter (RVEDD), tricuspid annular plane systolic excursion (TAPSE)] and on RV hypertrophy (RVH) by Fulton's index (FI) and RV-to-body weight (BW) ratio (RV/BW). We also examined myocardial histopathology and expression of metabolic markers in RV tissues. Results: There was a distinct transcriptomic signature of RVH in the SuHx model of PAH, with significant downregulation of metabolic enzymes involved in fatty acid transport, beta oxidation, and glucose oxidation compared to controls. Treatment with ACTZ led to a pattern of gene expression suggestive of restored metabolic balance in the RV with significantly increased beta oxidation transcripts. In addition, the FAO transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) was significantly downregulated in untreated SuHx rats compared to controls, and ACTZ treatment restored its expression levels. These metabolic changes were associated with amelioration of the hemodynamic and echocardiographic markers of RVH in the ACTZ-treated SuHx animals and attenuation of cardiomyocyte hypertrophy and RV fibrosis. Conclusion: Acetazolamide treatment prevents the development of PAH, RVH, and fibrosis in the SuHx rat model of severe PAH, improves RV function, and restores the RV metabolic profile.

12.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R835-R850, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826428

RESUMEN

Pulmonary hypertension (PH) is a serious disease with pulmonary arterial fibrotic remodeling and limited responsiveness to vasodilators. Our data suggest that mild acidosis induced by carbonic anhydrase inhibition could ameliorate PH, but the vascular mechanisms are unclear. We tested the hypothesis that carbonic anhydrase inhibition ameliorates PH by improving pulmonary vascular reactivity and relaxation mechanisms. Male Sprague-Dawley rats were either control normoxic (Nx), or injected with Sugen 5416 (20 mg/kg, sc) and subjected to hypoxia (9% O2) (Su + Hx), or Su + Hx treated with acetazolamide (ACTZ, 100 mg/kg/day, in drinking water). After measuring the hemodynamics, right ventricular hypertrophy was assessed by Fulton's Index; vascular function was measured in pulmonary artery, aorta, and mesenteric arteries; and pulmonary arteriolar remodeling was assessed in lung sections. Right ventricular systolic pressure and Fulton's Index were increased in Su + Hx and reduced in Su + Hx + ACTZ rats. Pulmonary artery contraction to KCl and phenylephrine were reduced in Su + Hx and improved in Su + Hx + ACTZ. Acetylcholine (ACh)-induced relaxation and nitrate/nitrite production were reduced in pulmonary artery of Su + Hx and improved in Su + Hx + ACTZ. ACh relaxation was blocked by nitric oxide (NO) synthase and guanylate cyclase inhibitors, supporting a role of NO-cGMP. Sodium nitroprusside (SNP)-induced relaxation was reduced in pulmonary artery of Su + Hx, and ACTZ enhanced relaxation to SNP. Contraction/relaxation were not different in aorta or mesenteric arteries of all groups. Pulmonary arterioles showed wall thickening in Su + Hx that was ameliorated in Su + Hx + ACTZ. Thus, amelioration of pulmonary hemodynamics during carbonic anhydrase inhibition involves improved pulmonary artery reactivity and NO-mediated relaxation and may enhance responsiveness to vasodilator therapies in PH.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Hipertensión Pulmonar/fisiopatología , Músculo Liso Vascular/fisiopatología , Arteria Pulmonar/fisiopatología , Animales , Hipoxia/fisiopatología , Masculino , Arterias Mesentéricas/fisiopatología , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
13.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535425

RESUMEN

Pulmonary hypertension (PH) is associated with meta-inflammation related to obesity but the role of adipose tissue in PH pathogenesis is unknown. We hypothesized that adipose tissue-derived metabolic regulators are altered in human and experimental PH. We measured circulating levels of fatty acid binding protein 4 (FABP-4), fibroblast growth factor -21 (FGF-21), adiponectin, and the mRNA levels of FABP-4, FGF-21, and peroxisome proliferator-activated receptor γ (PPARγ) in lung tissue of patients with idiopathic PH and healthy controls. We also evaluated lung and adipose tissue expression of these mediators in the three most commonly used experimental rodent models of pulmonary hypertension. Circulating levels of FABP-4, FGF-21, and adiponectin were significantly elevated in PH patients compared to controls and the mRNA levels of these regulators and PPARγ were also significantly increased in human PH lungs and in the lungs of rats with experimental PH compared to controls. These findings were coupled with increased levels of adipose tissue mRNA of genes related to glucose uptake, glycolysis, tricarboxylic acid cycle, and fatty acid oxidation in experimental PH. Our results support that metabolic alterations in human PH are recapitulated in rodent models of the disease and suggest that adipose tissue may contribute to PH pathogenesis.


Asunto(s)
Adipoquinas/metabolismo , Adiponectina/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Factores de Crecimiento de Fibroblastos/sangre , PPAR gamma/sangre , Hipertensión Arterial Pulmonar/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Femenino , Glucólisis , Hemodinámica , Humanos , Hipertensión Pulmonar/metabolismo , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Adulto Joven
14.
Pulm Circ ; 10(2): 2045894020910976, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32537128

RESUMEN

Echocardiography is the gold standard non-invasive technique to diagnose pulmonary hypertension. It is also an important modality used to monitor disease progression and response to treatment in patients with pulmonary hypertension. Surprisingly, only few studies have been conducted to validate and standardize echocardiographic parameters in experimental animal models of pulmonary hypertension. We sought to define cut-off values for both invasive and non-invasive measures of pulmonary hemodynamics and right ventricular hypertrophy that would reliably diagnose pulmonary hypertension in three different rat models. The study was designed in two phases: (1) a derivation phase to establish the cut-off values for invasive measures of right ventricular systolic pressure, Fulton's index (right ventricular weight/left ventricle + septum weight), right ventricular to body weight ratio, and non-invasive echocardiographic measures of pulmonary arterial acceleration time, pulmonary arterial acceleration time to ejection time ratio and right ventricular wall thickness in diastole in the hypoxic and monocrotaline rat models of pulmonary hypertension and (2) a validation phase to test the performance of the cut-off values in predicting pulmonary hypertension in an independent cohort of rats with Sugen/hypoxia-induced pulmonary hypertension. Our study demonstrates that right ventricular systolic pressure ≥35.5 mmHg and Fulton's Index ≥0.34 are highly sensitive (>94%) and specific (>91%) cut-offs to distinguish animals with pulmonary hypertension from controls. When pulmonary arterial acceleration time/ejection time and right ventricular wall thickness in diastole were both measured, a result of either pulmonary arterial acceleration time/ejection time ≤0.25 or right ventricular wall thickness in diastole ≥1.03 mm detected right ventricular systolic pressure ≥35.5 mmHg or Fulton's Index ≥0.34 with a sensitivity of 88% and specificity of 100%. With properly validated non-invasive echocardiography measures of right ventricular performance in rats that accurately predict invasive measures of pulmonary hemodynamics, future studies can now utilize these markers to test the efficacy of different treatments with preclinical therapeutic modeling.

15.
Clin Med Insights Pediatr ; 12: 1179556518817322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30574005

RESUMEN

Bronchopulmonary dysplasia (BPD) remains the most prevalent long-term morbidity of surviving extremely preterm infants and is associated with significant health care utilization in infancy and beyond. Recent advances in neonatal care have resulted in improved survival of extremely low birth weight (ELBW) infants; however, the incidence of BPD has not been substantially impacted by novel interventions in this vulnerable population. The multifactorial cause of BPD requires a multi-pronged approach for prevention and treatment. New approaches in assisted ventilation, optimal nutrition, and pharmacologic interventions are currently being evaluated. The focus of this review is the current state of the evidence for pharmacotherapy in BPD. Promising future approaches in need of further study will also be reviewed.

16.
Food Res Int ; 105: 333-343, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433222

RESUMEN

Antagonism in mixed culture fermentation can result in undesirable metabolic activity and negatively affect the fermentation process. Water-oil-water (W1/O/W2) double emulsions (DE) could be utilized in fermentation for segregating multiple species and controlling their release and activity. Zygosaccharomyces rouxii and Tetragenococcus halophilus, two predominant microbial species in soy sauce fermentation, were incorporated in the internal W1 and external W2 phase of a W1/O/W2, respectively. The suitability of DE for controlling T. halophilus and Z. rouxii in soy sauce fermentation was studied in relation to emulsion stability and microbial release profile. The effects of varying concentrations of Z. rouxii cells (5 and 7logCFU/mL) and glucose (0%, 6%, 12%, 30% w/v) in the W2 phase were investigated. DE stability was determined by monitoring encapsulation stability (%), oil globule size, and microstructure with fluorescence and optical microscopy. Furthermore, the effect of DE on the interaction between T. halophilus and Z. rouxii was studied in Tryptic Soy Broth containing 10% w/v NaCl and 12% w/v glucose and physicochemical changes (glucose, ethanol, lactic acid, and acetic acid) were monitored. DE destabilization resulted in cell release which was proportional to the glucose concentration in W2. Encapsulated Z. rouxii presented higher survival during storage (~3 log). The application of DE affected microbial cells growth and physiology, which led to the elimination of antagonism. These results demonstrate the potential use of DE as a delivery system of mixed starter cultures in food fermentation, where multiple species are required to act sequentially in a controlled manner.


Asunto(s)
Emulsiones/química , Enterococcaceae/aislamiento & purificación , Fermentación/fisiología , Manipulación de Alimentos/métodos , Zygosaccharomyces/aislamiento & purificación , Técnicas de Cultivo de Célula , Composición de Medicamentos , Enterococcaceae/metabolismo , Glucosa/metabolismo , Viabilidad Microbiana , Alimentos de Soja/microbiología , Zygosaccharomyces/metabolismo
17.
J Colloid Interface Sci ; 473: 9-21, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27042820

RESUMEN

Whilst literature describing edible Pickering emulsions is becoming increasingly available, current understanding of these systems still suffers from a lack of consistency in terms of the (processing and formulation) conditions within which these structures have been studied. The current study aims to provide a comparative analysis of the behaviour of different edible Pickering candidates and their ability to stabilise emulsion droplets, under well-controlled and uniform experimental conditions, in order to clearly identify the particle properties necessary for successful Pickering functionality. More specifically, an extensive investigation into the suitability of various food-grade material to act as Pickering particles and provide stable oil-in-water (O/W) and water-in-oil (W/O) emulsions was carried out. Polysaccharide and flavonoid particles were characterised in terms of their size, ζ-potential, interfacial activity and wettability, under equivalent conditions. Particles were subsequently used to stabilise 20% w/w O/W and W/O emulsions, in the absence of added surfactant or other known emulsifying agents, through different processing routes. All formed Pickering emulsions were shown to resist significant droplet size variation and remain stable at particle concentrations between 2 and 3% w/w. The main particle prerequisites for successful Pickering stabilisation were: particle size (200nm - 1µm); an affinity for the emulsion continuous phase and a sufficient particle charge to extend stability. Depending upon the employed emulsification process, the resulting emulsion formation and stability behaviour can be reasonably predicted a priori from the evaluation of specific particle characteristics.


Asunto(s)
Emulsiones/química , Flavonoides/química , Aditivos Alimentarios/química , Aceites/química , Polisacáridos/química , Agua/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Tensoactivos/química , Humectabilidad
18.
Case Rep Pediatr ; 2015: 738571, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26101681

RESUMEN

We describe an alternative strategy for management of severe growth failure in a 14-year-old child who presented with advanced chronic kidney disease close to puberty. The patient was initially treated with growth hormone for a year until kidney transplantation, followed immediately by a year-long course of an aromatase inhibitor, anastrozole, to prevent epiphyseal fusion and prolong the period of linear growth. Outcome was excellent, with successful transplant and anticipated complete correction of height deficit. This strategy may be appropriate for children with chronic kidney disease and short stature who are in puberty.

19.
Food Hydrocoll ; 35(100): 522-530, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24882914

RESUMEN

This study investigated the in vitro acid-induced gelation of mixed systems of two biopolymers; low acyl and high acyl gellan gum. Rheological and texture analysis showed that these mixed gels displayed textures that lay between the material properties exhibited for the low and high acyl variants. DSC analysis showed that mixtures of the low acyl and high acyl forms exhibit two separate conformational transitions at temperatures coincident with each of the individual biopolymers. Various metabolically relevant pH environments and hydrocolloid concentrations were investigated. These resulted in very different acid gelled structures, which were characterised by texture analysis. The structures of the acid gels were shown to depend upon the pH, hydrocolloid concentration and proportion of each biopolymer used during their production. A selection of these mixed gellan structures were assessed post-production in terms of their response to prolonged exposure to an acidic (pH 1), stomach-like, environment. This resulted in a significant increase in the gel strength, regardless of the biopolymer proportions. The high acyl gellan was less acid-sensitive, and subsequently no evidence of acid gelation was observed with high acyl gellan at a proportion greater than 60% of the total biopolymer. The findings presented here demonstrate that structuring as well as de-structuring of mixed gellan acid gels can be controlled in acidic environments similar to those that are present in the stomach after food consumption.

20.
J Colloid Interface Sci ; 366(1): 209-215, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22024373

RESUMEN

In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.


Asunto(s)
Emulsiones , Alimentos , Celulosa/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Aceites , Oxidación-Reducción , Almidón/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...