Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 15(1): 1981, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438391

RESUMEN

Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.


Asunto(s)
Escherichia coli , Genes Sintéticos , Escherichia coli/genética , Concienciación , Unión Competitiva , Ciclo Celular
2.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048610

RESUMEN

SUMMARY: As demand for the automation of biological assays has increased over recent years, the range of measurement types implemented by multiwell plate readers has broadened and the list of published software packages that caters to their analysis has grown. However, most plate readers export data in esoteric formats with little or no metadata, while most analytical software packages are built to work with tidy data accompanied by associated metadata. 'Parser' functions are therefore required to prepare raw data for analysis. Such functions are instrument- and data type-specific, and to date, no generic tool exists that can parse data from multiple data types or multiple plate readers, despite the potential for such a tool to speed up access to analysed data and remove an important barrier for less confident coders. We have developed the interactive web application, Parsley, to bridge this gap. Unlike conventional programmatic parser functions, Parsley makes few assumptions about exported data, instead employing user inputs to identify and extract data from data files. In doing so, it is designed to enable any user to parse plate reader data and can handle a wide variety of instruments (10+) and data types (53+). Parsley is freely available via a web interface, enabling access to its unique plate reader data parsing functionality, without the need to install software or write code. AVAILABILITY AND IMPLEMENTATION: The Parsley web application can be accessed at: https://gbstan.shinyapps.io/parsleyapp/. The source code is available at: https://github.com/ec363/parsleyapp and is archived on Zenodo: https://zenodo.org/records/10011752.


Asunto(s)
Aplicaciones Móviles , Automatización , Almacenamiento y Recuperación de la Información , Metadatos
3.
Nat Commun ; 14(1): 3471, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308512

RESUMEN

Predicting the evolution of engineered cell populations is a highly sought-after goal in biotechnology. While models of evolutionary dynamics are far from new, their application to synthetic systems is scarce where the vast combination of genetic parts and regulatory elements creates a unique challenge. To address this gap, we here-in present a framework that allows one to connect the DNA design of varied genetic devices with mutation spread in a growing cell population. Users can specify the functional parts of their system and the degree of mutation heterogeneity to explore, after which our model generates host-aware transition dynamics between different mutation phenotypes over time. We show how our framework can be used to generate insightful hypotheses across broad applications, from how a device's components can be tweaked to optimise long-term protein yield and genetic shelf life, to generating new design paradigms for gene regulatory networks that improve their functionality.


Asunto(s)
Concienciación , Biotecnología , Redes Reguladoras de Genes , Mutación , Fenotipo
4.
5.
Nucleic Acids Res ; 51(7): 3452-3464, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912077

RESUMEN

Competition for intracellular resources, also known as gene expression burden, induces coupling between independently co-expressed genes, a detrimental effect on predictability and reliability of gene circuits in mammalian cells. We recently showed that microRNA (miRNA)-mediated target downregulation correlates with the upregulation of a co-expressed gene, and by exploiting miRNAs-based incoherent-feed-forward loops (iFFLs) we stabilise a gene of interest against burden. Considering these findings, we speculate that miRNA-mediated gene downregulation causes cellular resource redistribution. Despite the extensive use of miRNA in synthetic circuits regulation, this indirect effect was never reported before. Here we developed a synthetic genetic system that embeds miRNA regulation, and a mathematical model, MIRELLA, to unravel the miRNA (MI) RolE on intracellular resource aLLocAtion. We report that the link between miRNA-gene downregulation and independent genes upregulation is a result of the concerted action of ribosome redistribution and 'queueing-effect' on the RNA degradation pathway. Taken together, our results provide for the first time insights into the hidden regulatory interaction of miRNA-based synthetic networks, potentially relevant also in endogenous gene regulation. Our observations allow to define rules for complexity- and context-aware design of genetic circuits, in which transgenes co-expression can be modulated by tuning resource availability via number and location of miRNA target sites.


Asunto(s)
MicroARNs , Modelos Genéticos , Animales , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Genes Sintéticos , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , Reproducibilidad de los Resultados
6.
Nat Commun ; 13(1): 6600, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329019

RESUMEN

This paper presents a generalisable method for the calibration of fluorescence readings on microplate readers, in order to convert arbitrary fluorescence units into absolute units. FPCountR relies on the generation of bespoke fluorescent protein (FP) calibrants, assays to determine protein concentration and activity, and a corresponding analytical workflow. We systematically characterise the assay protocols for accuracy, sensitivity and simplicity, and describe an 'ECmax' assay that outperforms the others and even enables accurate calibration without requiring the purification of FPs. To obtain cellular protein concentrations, we consider methods for the conversion of optical density to either cell counts or alternatively to cell volumes, as well as examining how cells can interfere with protein counting via fluorescence quenching, which we quantify and correct for the first time. Calibration across different instruments, disparate filter sets and mismatched gains is demonstrated to yield equivalent results. It also reveals that mCherry absorption at 600 nm does not confound cell density measurements unless expressed to over 100,000 proteins per cell. FPCountR is presented as pair of open access tools (protocol and R package) to enable the community to use this method, and ultimately to facilitate the quantitative characterisation of synthetic microbial circuits.


Asunto(s)
Proteínas , Fluorescencia , Calibración
7.
GEN Biotechnol ; 1(4): 360-371, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36061221

RESUMEN

Synthetic biology has a natural synergy with deep learning. It can be used to generate large data sets to train models, for example by using DNA synthesis, and deep learning models can be used to inform design, such as by generating novel parts or suggesting optimal experiments to conduct. Recently, research at the interface of engineering biology and deep learning has highlighted this potential through successes including the design of novel biological parts, protein structure prediction, automated analysis of microscopy data, optimal experimental design, and biomolecular implementations of artificial neural networks. In this review, we present an overview of synthetic biology-relevant classes of data and deep learning architectures. We also highlight emerging studies in synthetic biology that capitalize on deep learning to enable novel understanding and design, and discuss challenges and future opportunities in this space.

8.
Nucleic Acids Res ; 50(15): 8947-8960, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35920321

RESUMEN

Despite advances in bacterial genome engineering, delivery of large synthetic constructs remains challenging in practice. In this study, we propose a straightforward and robust approach for the markerless integration of DNA fragments encoding whole metabolic pathways into the genome. This approach relies on the replacement of a counterselection marker with cargo DNA cassettes via λRed recombineering. We employed a counterselection strategy involving a genetic circuit based on the CI repressor of λ phage. Our design ensures elimination of most spontaneous mutants, and thus provides a counterselection stringency close to the maximum possible. We improved the efficiency of integrating long PCR-generated cassettes by exploiting the Ocr antirestriction function of T7 phage, which completely prevents degradation of unmethylated DNA by restriction endonucleases in wild-type bacteria. The employment of highly restrictive counterselection and ocr-assisted λRed recombineering allowed markerless integration of operon-sized cassettes into arbitrary genomic loci of four enterobacterial species with an efficiency of 50-100%. In the case of Escherichia coli, our strategy ensures simple combination of markerless mutations in a single strain via P1 transduction. Overall, the proposed approach can serve as a general tool for synthetic biology and metabolic engineering in a range of bacterial hosts.


Asunto(s)
Bacteriófago lambda , Escherichia coli , Bacteriófago lambda/genética , ADN , Escherichia coli/genética , Genoma Bacteriano , Operón
9.
Microb Cell Fact ; 21(1): 115, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35698129

RESUMEN

BACKGROUND: Low-cost sustainable feedstocks are essential for commercially viable biotechnologies. These feedstocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capacity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour (DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway. RESULTS: Here, we model a two-strain consortium, with one strain expressing an endohydrolase and a second strain expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a balance between increasing expression to enhance degradation versus the burden that higher expression causes. Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single-cell monoculture. CONCLUSIONS: We demonstrate that resource-aware whole-cell models can be used to predict the benefits and limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, complex-substrate degradation pathways.


Asunto(s)
Consorcios Microbianos , Eliminación de Residuos , Alimentos
10.
Synth Biol (Oxf) ; 7(1): ysac004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35540864

RESUMEN

Laboratory automation and mathematical optimization are key to improving the efficiency of synthetic biology research. While there are algorithms optimizing the construct designs and synthesis strategies for DNA assembly, the optimization of how DNA assembly reaction mixes are prepared remains largely unexplored. Here, we focus on reducing the pipette tip consumption of a liquid-handling robot as it delivers DNA parts across a multi-well plate where several constructs are being assembled in parallel. We propose a linear programming formulation of this problem based on the capacitated vehicle routing problem, as well as an algorithm which applies a linear programming solver to our formulation, hence providing a strategy to prepare a given set of DNA assembly mixes using fewer pipette tips. The algorithm performed well in randomly generated and real-life scenarios concerning several modular DNA assembly standards, proving to be capable of reducing the pipette tip consumption by up to [Formula: see text] in large-scale cases. Combining automatic process optimization and robotic liquid handling, our strategy promises to greatly improve the efficiency of DNA assembly, either used alone or combined with other algorithmic DNA assembly optimization methods. Graphical Abstract.

11.
Trends Microbiol ; 30(6): 515-518, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35346553

RESUMEN

In recent years, microfluidic technologies have become widespread in biological science. However, the suitability of this technique for understanding different aspects of spore research has hardly been considered. Herein, we review recent developments in 'spores-on-a-chip' technologies, highlighting how they could be exploited to drive new frontiers in spore research.


Asunto(s)
Dispositivos Laboratorio en un Chip , Esporas Bacterianas , Esporas
12.
ACS Synth Biol ; 11(2): 562-569, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35133150

RESUMEN

Synthetic RNA systems offer unique advantages such as faster response, increased specificity, and programmability compared to conventional protein-based networks. Here, we demonstrate an in vitro RNA-based toggle switch using RNA aptamers capable of inhibiting the transcriptional activity of T7 or SP6 RNA polymerases. The activities of both polymerases are monitored simultaneously by using Broccoli and malachite green light-up aptamer systems. In our toggle switch, a T7 promoter drives the expression of SP6 inhibitory aptamers, and an SP6 promoter expresses T7 inhibitory aptamers. We show that the two distinct states originating from the mutual inhibition of aptamers can be toggled by adding DNA sequences to sequester the RNA inhibitory aptamers. Finally, we assessed our RNA-based toggle switch in degrading conditions by introducing controlled degradation of RNAs using a mix of RNases. Our results demonstrate that the RNA-based toggle switch could be used as a control element for nucleic acid networks in synthetic biology applications.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , Regiones Promotoras Genéticas/genética , ARN/genética , Biología Sintética
13.
Nucleic Acids Res ; 50(3): 1783-1793, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35061908

RESUMEN

The rational design and realisation of simple-to-use genetic control elements that are modular, orthogonal and robust is essential to the construction of predictable and reliable biological systems of increasing complexity. To this effect, we introduce modular Artificial RNA interference (mARi), a rational, modular and extensible design framework that enables robust, portable and multiplexed post-transcriptional regulation of gene expression in Escherichia coli. The regulatory function of mARi was characterised in a range of relevant genetic contexts, demonstrating its independence from other genetic control elements and the gene of interest, and providing new insight into the design rules of RNA based regulation in E. coli, while a range of cellular contexts also demonstrated it to be independent of growth-phase and strain type. Importantly, the extensibility and orthogonality of mARi enables the simultaneous post-transcriptional regulation of multi-gene systems as both single-gene cassettes and poly-cistronic operons. To facilitate adoption, mARi was designed to be directly integrated into the modular BASIC DNA assembly framework. We anticipate that mARi-based genetic control within an extensible DNA assembly framework will facilitate metabolic engineering, layered genetic control, and advanced genetic circuit applications.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ingeniería Genética , Interferencia de ARN
14.
Cell Syst ; 12(12): 1124-1126, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34914902

RESUMEN

How do you define homeostasis, and what experimental observations are necessary to discover homeostatic mechanisms in the biological system you study?


Asunto(s)
Homeostasis
15.
Curr Opin Microbiol ; 62: 68-75, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062481

RESUMEN

The implementation of novel functionalities in living cells is a key aspect of synthetic biology. In the last decade, the field of synthetic biology has made progress working in synergy with control engineering, whose solid framework has provided concepts and tools to analyse biological systems and guide their design. In this review, we briefly highlight recent work focused on the application of control theoretical concepts and tools for the analysis and design of synthetic biology systems in microbial cells.


Asunto(s)
Ingeniería Metabólica , Biología Sintética
16.
J Integr Bioinform ; 18(3)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34098590

RESUMEN

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Humanos , Lenguaje
17.
J R Soc Interface ; 18(177): 20200985, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849334

RESUMEN

One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.


Asunto(s)
Modelos Biológicos , Biología Sintética , Algoritmos , Probabilidad , Procesos Estocásticos
18.
PLoS One ; 16(1): e0245280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33449976

RESUMEN

rfaRm is an R package providing a client-side interface for the Rfam database of non-coding RNA and other structured RNA elements. The package facilitates the search of the Rfam database by keywords or sequences, as well as the retrieval of all available information about specific Rfam families, such as member sequences, multiple sequence alignments, secondary structures and covariance models. By providing such programmatic access to the Rfam database, rfaRm enables genomic workflows to incorporate information about non-coding RNA, whose potential cannot be fully exploited just through interactive access to the database. The features of rfaRm are demonstrated by using it to analyze the SARS-CoV-2 genome as an example case.


Asunto(s)
ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Bases de Datos Genéticas , Humanos , ARN no Traducido/química , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/genética
19.
Biology (Basel) ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430483

RESUMEN

The effect of gene expression burden on engineered cells has motivated the use of "whole-cell models" (WCMs) that use shared cellular resources to predict how unnatural gene expression affects cell growth. A common problem with many WCMs is their inability to capture translation in sufficient detail to consider the impact of ribosomal queue formation on mRNA transcripts. To address this, we have built a "stochastic cell calculator" (StoCellAtor) that combines a modified TASEP with a stochastic implementation of an existing WCM. We show how our framework can be used to link a synthetic construct's modular design (promoter, ribosome binding site (RBS) and codon composition) to protein yield during continuous culture, with a particular focus on the effects of low-efficiency codons and their impact on ribosomal queues. Through our analysis, we recover design principles previously established in our work on burden-sensing strategies, namely that changing promoter strength is often a more efficient way to increase protein yield than RBS strength. Importantly, however, we show how these design implications can change depending on both the duration of protein expression, and on the presence of ribosomal queues.

20.
ACS Nano ; 15(2): 3272-3283, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33470806

RESUMEN

The use of templates is a well-established method for the production of sequence-controlled assemblies, particularly long polymers. Templating is canonically envisioned as akin to a self-assembly process, wherein sequence-specific recognition interactions between a template and a pool of monomers favor the assembly of a particular polymer sequence at equilibrium. However, during the biogenesis of sequence-controlled polymers, template recognition interactions are transient; RNA and proteins detach spontaneously from their templates to perform their biological functions and allow template reuse. Breaking template recognition interactions puts the product sequence distribution far from equilibrium, since specific product formation can no longer rely on an equilibrium dominated by selective copy-template bonds. The rewards of engineering artificial polymer systems capable of spontaneously exhibiting nonequilibrium templating are large, but fields like DNA nanotechnology lack the requisite tools; the specificity and drive of conventional DNA reactions rely on product stability at equilibrium, sequestering any recognition interaction in products. The proposed alternative is handhold-mediated strand displacement (HMSD), a DNA-based reaction mechanism suited to producing out-of-equilibrium products. HMSD decouples the drive and specificity of the reaction by introducing a transient recognition interaction, the handhold. We measure the kinetics of 98 different HMSD systems to prove that handholds can accelerate displacement by 4 orders of magnitude without being sequestered in the final product. We then use HMSD to template the selective assembly of any one product DNA duplex from an ensemble of equally stable alternatives, generating a far-from-equilibrium output. HMSD thus brings DNA nanotechnology closer to the complexity of out-of-equilibrium biological systems.


Asunto(s)
Ácidos Nucleicos , ADN , Cinética , Nanotecnología , Conformación de Ácido Nucleico , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...