Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biol Proced Online ; 26(1): 7, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504200

RESUMEN

BACKGROUND: Osteoclasts are the tissue-specific macrophage population of the bone and unique in their bone-resorbing activity. Hence, they are fundamental for bone physiology in health and disease. However, efficient protocols for the isolation and study of primary human osteoclasts are scarce. In this study, we aimed to establish a protocol, which enables the efficient differentiation of functional human osteoclasts from monocytes. RESULTS: Human monocytes were isolated through a double-density gradient from donor blood. Compared to standard differentiation schemes in polystyrene cell culture dishes, the yield of multinuclear osteoclasts was significantly increased upon initial differentiation of monocytes to macrophages in fluorinated ethylene propylene (FEP) Teflon bags. This initial differentiation phase was then followed by the development of terminal osteoclasts by addition of Receptor Activator of NF-κB Ligand (RANKL). High concentrations of RANKL and Macrophage colony-stimulating factor (M-CSF) as well as an intermediate cell density further supported efficient cell differentiation. The generated cells were highly positive for CD45, CD14 as well as the osteoclast markers CD51/ITGAV and Cathepsin K/CTSK, thus identifying them as osteoclasts. The bone resorption of the osteoclasts was significantly increased when the cells were differentiated from macrophages derived from Teflon bags compared to macrophages derived from conventional cell culture plates. CONCLUSION: Our study has established a novel protocol for the isolation of primary human osteoclasts that improves osteoclastogenesis in comparison to the conventionally used cultivation approach.

2.
J Vis Exp ; (196)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37335099

RESUMEN

Testing the function of therapeutic compounds in plants is an important component of agricultural research. Foliar and soil-drench methods are routine but have drawbacks, including variable uptake and the environmental breakdown of tested molecules. Trunk injection of trees is well-established, but most methods for this require expensive, proprietary equipment. To screen various treatments for Huanglongbing, a simple, low-cost method to deliver these compounds to the vascular tissue of small greenhouse-grown citrus trees infected with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) or infested with the phloem-feeding CLas insect vector Diaphorina citri Kuwayama (D. citri) is needed. To meet these screening requirements, a direct plant infusion (DPI) device was designed that connects to the plant's trunk. The device is made using a nylon-based 3D-printing system and easily obtainable auxiliary components. The compound uptake efficacy of this device was tested in citrus plants using the fluorescent marker 5,6-carboxyfluorescein-diacetate. Uniform compound distribution of the marker throughout the plants was routinely observed. Furthermore, this device was used to deliver antimicrobial and insecticidal molecules to determine their effects on CLas and D. citri respectively. The aminoglycoside antibiotic streptomycin was delivered into CLas-infected citrus plants using the device, which resulted in a reduction in the CLas titer from 2 weeks to 4 weeks post treatment. Delivering the neonicotinoid insecticide imidacloprid into D. citri-infested citrus plants resulted in a significant increase in psyllid mortality after 7 days. These results suggest that this DPI device represents a useful system for delivering molecules into plants for testing and facilitate research and screening purposes.


Asunto(s)
Citrus , Hemípteros , Insecticidas , Rhizobiaceae , Animales , Hemípteros/microbiología , Enfermedades de las Plantas/microbiología
3.
J Clin Med ; 12(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373797

RESUMEN

Although the rate of infection after the reconstruction of a ruptured anterior cruciate ligament (ACL) is low, prophylactic incubation of the graft with vancomycin (Vanco-wrap or vancomycin soaking) is routinely performed. A cytotoxic effect of vancomycin is reported for several cell types, and the prophylactic treatment might prevent infection but harm the tissue and cells. AIM: A comprehensive study was performed to investigate the effect of vancomycin on tendon tissue and isolated tenocytes using cell viability, molecular and mechanical analysis. MATERIAL AND METHODS: Rat tendons or isolated tenocytes were incubated in increasing concentrations of vancomycin (0-10 mg/mL) for different times, and cell viability, gene expression, histology and Young's modulus were analyzed. RESULTS: The clinically used concentration of vancomycin (5 mg/mL for 20 min) had no negative effect on cell viability in the tendons or the isolated tenocytes, while incubation with the toxic control significantly reduced cell viability. Increasing the concentration and prolonging the incubation time had no negative effect on the cells. The expression of Col1a1, Col3a1 and the tenocyte markers mohawk, scleraxis and tenomodulin was not affected by the various vancomycin concentrations. The structural integrity as measured through histological and mechanical testing was not compromised. CONCLUSION: The results proved the safe application of the Vanco-wrap on tendon tissue. LEVEL OF EVIDENCE: IV.

4.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900357

RESUMEN

Cancer-induced bone pain (CIBP) is a common and devastating symptom with limited treatment options in patients, significantly affecting their quality of life. The use of rodent models is the most common approach to uncovering the mechanisms underlying CIBP; however, the translation of results to the clinic may be hindered because the assessment of pain-related behavior is often based exclusively on reflexive-based methods, which are only partially indicative of relevant pain in patients. To improve the accuracy and strength of the preclinical, experimental model of CIBP in rodents, we used a battery of multimodal behavioral tests that were also aimed at identifying rodent-specific behavioral components by using a home-cage monitoring assay (HCM). Rats of all sexes received an injection with either heat-deactivated (sham-group) or potent mammary gland carcinoma Walker 256 cells into the tibia. By integrating multimodal datasets, we assessed pain-related behavioral trajectories of the CIBP-phenotype, including evoked and non-evoked based assays and HCM. Using principal component analysis (PCA), we discovered sex-specific differences in establishing the CIBP-phenotype, which occurred earlier (and differently) in males. Additionally, HCM phenotyping revealed the occurrence of sensory-affective states manifested by mechanical hypersensitivity in sham when housed with a tumor-bearing cagemate (CIBP) of the same sex. This multimodal battery allows for an in-depth characterization of the CIBP-phenotype under social aspects in rats. The detailed, sex-specific, and rat-specific social phenotyping of CIBP enabled by PCA provides the basis for mechanism-driven studies to ensure robustness and generalizability of results and provide information for targeted drug development in the future.

5.
J Control Release ; 357: 299-308, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958403

RESUMEN

Overuse injuries or acute trauma in joints often lead to painful tendinopathy, and pharmacological treatment effects are limited. The site of the disease is hard to reach with drugs, both systemically and through the skin. Therapeutic gases may close this gap, as they permeate easier through tissues than conventional small molecules. We present a patch device releasing the anti-inflammatory gas carbon monoxide (CO) through the skin to the subcutaneous tendons and tissues. CO is chemically generated upon device activation and its design maximizes CO exposure to the underlying skin and protects the patient from all side and degradation products. The patch delivered CO successfully through the intact skin, granting lasting, subcutaneous CO exposure for up to 16 h. Furthermore, the released CO induced the proliferation of fibroblasts and the polarization of monocytes into anti-inflammatory M2 macrophages. In conclusion, the CO-releasing device might open an entirely new treatment option against tendinopathies in case of a positive outcome of future in vivo studies.


Asunto(s)
Antiinflamatorios , Monóxido de Carbono , Humanos , Monóxido de Carbono/metabolismo , Antiinflamatorios/química , Macrófagos/metabolismo , Monocitos/metabolismo , Piel/metabolismo
6.
Eur J Trauma Emerg Surg ; 49(1): 75-85, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36149435

RESUMEN

BACKGROUND: An increasing clinical workload and growing financial, administrative and legal burdens as well as changing demands regarding work-life balance have resulted in an increased emphasis on clinical practice at the expense of research activities by orthopaedic trauma surgeons. This has led to an overall decrease in the number of scientifically active clinicians in orthopaedic trauma surgery, which represents a serious burden on research in this field. In order to guarantee that the clinical relevance of this discipline is also mirrored in the scientific field, new concepts are needed to keep clinicians involved in research. METHODS: Literature review and discussion of the results of a survey. RESULTS/CONCLUSION: An interdisciplinary and -professional team approach involving clinicians and basic scientists with different fields of expertise appears to be a promising method. Although differences regarding motivation, research focuses, funding rates and sources as well as inhibitory factors for research activities between basic scientists and clinicians exist, successful and long-lasting collaborations have already proven fruitful. For further implementation of the team approach, diverse prerequisites are necessary. Among those measures, institutions (e.g. societies, universities etc.) must shift the focus of their support mechanisms from independent scientist models to research team performances.


Asunto(s)
Procedimientos Ortopédicos , Ortopedia , Humanos
7.
Bone Joint Res ; 11(8): 561-574, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35920195

RESUMEN

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.

8.
Unfallchirurg ; 125(5): 408-416, 2022 May.
Artículo en Alemán | MEDLINE | ID: mdl-35312796

RESUMEN

BACKGROUND: To improve research in orthopedics and traumatology (O&T) in Germany, the implementation of comprehensive research collaborations and enhanced communication pathways among different institutions are necessary. This survey was initiated to collect data regarding the current research structures in O&T. MATERIAL AND METHODS: A subject-specific questionnaire was sent via email to collect data regarding demographics, on-going and past research activities and the funding. Naming of current and future research topics and problems regarding realization of projects were determined. All results were submitted electronically, anonymously and voluntarily. RESULTS: Of 229 participants, 83% worked as clinicians and 59.6% of the participants were working in departments with joint structures (O&T). Industry and universities were found to be the essential funding sources. Future research topics tend to concentrate on digital health issues (artificial intelligence, big data, 3D-printing). Resource scarcity in time and staff as well as administrative barriers but also insufficient funding were identified as major impediments of research activity. CONCLUSION: Future research development in O&T will cause an expansion of techniques and methods. At the same time aggravated personnel, financial, administrative and legal framework conditions can only be managed with an intensively increased effort. Cooperation projects and collaborative research structures might be a solution to these challenges.


Asunto(s)
Ortopedia , Traumatología , Inteligencia Artificial , Alemania , Humanos , Encuestas y Cuestionarios
9.
Cells ; 11(5)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269444

RESUMEN

Female sex is increasingly associated with a loss of bone mass during aging and an increased risk of developing nonunion fractures. Hormonal factors and cell-intrinsic mechanisms are suggested to drive these sexual dimorphisms, although underlying molecular mechanisms are still a matter of debate. Here, we observed a decreased capacity of calvarial bone recovery in female rats and a profound sexually dimorphic osteogenic differentiation in human adult neural crest-derived stem cells (NCSCs). Next to an elevated expression of pro-osteogenic regulators, global transcriptomics revealed Lysine Demethylase 5D (KDM5D) to be highly upregulated in differentiating male NCSCs. Loss of function by siRNA or pharmacological inhibition of KDM5D significantly reduced the osteogenic differentiation capacity of male NCSCs. In summary, we demonstrated craniofacial osteogenic differentiation to be sexually dimorphic with the expression of KDM5D as a prerequisite for accelerated male osteogenic differentiation, emphasizing the analysis of sex-specific differences as a crucial parameter for treating bone defects.


Asunto(s)
Lisina , Osteogénesis , Animales , Diferenciación Celular/genética , Femenino , Histona Demetilasas/genética , Humanos , Masculino , Antígenos de Histocompatibilidad Menor , ARN Interferente Pequeño/genética , Ratas , Cráneo
10.
Nat Commun ; 13(1): 571, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091558

RESUMEN

Developmental osteogenesis, physiological bone remodelling and fracture healing require removal of matrix and cellular debris. Osteoclasts generated by the fusion of circulating monocytes degrade bone, whereas the identity of the cells responsible for cartilage resorption is a long-standing and controversial question. Here we show that matrix degradation and chondrocyte phagocytosis are mediated by fatty acid binding protein 5-expressing cells representing septoclasts, which have a mesenchymal origin and are not derived from haematopoietic cells. The Notch ligand Delta-like 4, provided by endothelial cells, is necessary for septoclast specification and developmental bone growth. Consistent with the termination of growth, septoclasts disappear in adult and ageing bone, but re-emerge in association with growing vessels during fracture healing. We propose that cartilage degradation is mediated by rare, specialized cells distinct from osteoclasts. Our findings have implications for fracture healing, which is frequently impaired in aging humans.


Asunto(s)
Cartílago/metabolismo , Curación de Fractura/fisiología , Células Madre Mesenquimatosas/metabolismo , Osteoclastos/metabolismo , Osteogénesis/fisiología , Animales , Huesos/citología , Huesos/metabolismo , Huesos/ultraestructura , Cartílago/citología , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Curación de Fractura/genética , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Inmunoelectrónica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoclastos/citología , Osteogénesis/genética , RNA-Seq/métodos
11.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613952

RESUMEN

Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP -/-), SP-deficient (Tac1-/-) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.


Asunto(s)
Dolor Crónico , Fracturas Osteoporóticas , Animales , Femenino , Ratones , Callo Óseo , Péptido Relacionado con Gen de Calcitonina , Curación de Fractura/fisiología , Hiperalgesia/etiología , Fracturas Osteoporóticas/diagnóstico por imagen , Ovariectomía , Sistema Nervioso Periférico
12.
Cell Death Dis ; 12(11): 1049, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741033

RESUMEN

Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd-/-) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd-/- tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd-/- tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd-/- tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd-/- tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd-/- mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair.


Asunto(s)
Tendón Calcáneo/patología , Proteínas de la Membrana/deficiencia , Osificación Heterotópica/etiología , Osificación Heterotópica/patología , Cicatrización de Heridas , Heridas y Lesiones/complicaciones , Tendón Calcáneo/ultraestructura , Actinas/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células , Condrogénesis , Cicatriz/patología , Módulo de Elasticidad , Elasticidad , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestructura , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Inflamación/patología , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Viscosidad
13.
BMC Cancer ; 21(1): 571, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006252

RESUMEN

BACKGROUND: The mechanism of small-molecule stabilised protein-protein interactions is of growing interest in the pharmacological discovery process. A plethora of different substances including the aromatic sulphonamide E7820 have been identified to act by such a mechanism. The process of E7820 induced CAPERα degradation and the resultant transcriptional down regulation of integrin α2 expression has previously been described for a variety of different cell lines and been made responsible for E7820's antiangiogenic activity. Currently the application of E7820 in the treatment of various malignancies including pancreas carcinoma and breast cancer is being investigated in pre-clinical and clinical trials. It has been shown, that integrin α2 deficiency has beneficial effects on bone homeostasis in mice. To transfer E7820 treatment to bone-related pathologies, as non-healing fractures, osteoporosis and bone cancer might therefore be beneficial. However, at present no data is available on the effect of E7820 on osseous cells or skeletal malignancies. METHODS: Pre-osteoblastic (MC3T3 and Saos-2) cells and endothelial (eEnd2 cells and HUVECs) cells, each of human and murine origin respectively, were investigated. Vitality assay with different concentrations of E7820 were performed. All consecutive experiments were done at a final concentration of 50 ng/ml E7820. The expression and production of integrin α2 and CAPERα were investigated by quantitative real-time PCR and western blotting. Expression of CAPERα splice forms was differentiated by semi-quantitiative reverse transcriptase PCR. RESULTS: Here we present the first data showing that E7820 can increase integrin α2 expression in the pre-osteoblast MC3T3 cell line whilst also reproducing canonical E7820 activity in HUVECs. We show that the aberrant activity of E7820 in MC3T3 cells is likely due to differential activity of CAPERα at the integrin α2 promoter, rather than due to differential CAPERα degradation or differential expression of CAPERα spliceforms. CONCLUSION: The results presented here indicate that E7820 may not be suitable to treat certain malignancies of musculoskeletal origin, due to the increase in integrin α2 expression it may induce. Further investigation of the differential functioning of CAPERα and the integrin α2 promoter in cells of various origin would however be necessary to more clearly differentiate between cell lines that will positively respond to E7820 from those that will not.


Asunto(s)
Indoles/farmacología , Integrina alfa2/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Sulfonamidas/farmacología , Transactivadores/antagonistas & inhibidores , Animales , Línea Celular , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina alfa2/metabolismo , Ligandos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Materials (Basel) ; 14(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919825

RESUMEN

Bone substitute materials are becoming increasingly important in oral and maxillofacial surgery. Reconstruction of critical size bone defects is still challenging for surgeons. Here, we compared the clinically applied organic bone substitute materials NanoBone® (nanocrystalline hydroxyapatite and nanostructured silica gel; n = 5) and Actifuse (calcium phosphate with silicate substitution; n = 5) with natural collagen-based Spongostan™ (hardened pork gelatin containing formalin and lauryl alcohol; n = 5) in bilateral rat critical-size defects (5 mm diameter). On topological level, NanoBone is known to harbour nanopores of about 20 nm diameter, while Actifuse comprises micropores of 200-500 µm. Spongostan™, which is clinically applied as a haemostatic agent, combines in its wet form both nano- and microporous topological features by comprising 60.66 ± 24.48 µm micropores accompanied by nanopores of 32.97 ± 1.41 nm diameter. Micro-computed tomography (µCT) used for evaluation 30 days after surgery revealed a significant increase in bone volume by all three bone substitute materials in comparison to the untreated controls. Clearly visual was the closure of trepanation in all treated groups, but granular appearance of NanoBone® and Actifuse with less closure at the margins of the burr holes. In contrast, transplantion of Spongostan™ lead to complete filling of the burr hole with the highest bone volume of 7.98 ccm and the highest bone mineral density compared to all other groups. In summary, transplantation of Spongostan™ resulted in increased regeneration of a rat calvarial critical size defect compared to NanoBone and Actifuse, suggesting the distinct nano- and microtopography of wet Spongostan™ to account for this superior regenerative capacity. Since Spongostan™ is a clinically approved product used primarily for haemostasis, it may represent an interesting alternative in the reconstruction of defects in the maxillary region.

15.
Sci Rep ; 10(1): 20510, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239699

RESUMEN

The heparan sulfate proteoglycan Syndecan-1, a mediator of signals between the extracellular matrix and cells involved is able to interact with OPG, one of the major regulators of osteoclastogenesis. The potential of osteoblasts to induce osteoclastogenesis is characterized by a switch of OPG (low osteoclastogenic potential) towards RANKL production (high osteoclastogenic potential). In the present study, we investigated the influence of endogenous Syndecan-1 on local bone-cell-communication via the RANKL/OPG-axis in murine osteoblasts and osteoclasts in wild type and Syndecan-1 lacking cells. Syndecan-1 expression and secretion was increased in osteoblasts with high osteoclastogenic potential. Syndecan-1 deficiency led to increased OPG release by osteoblasts that decreased the availability of RANKL. In co-cultures of Syndecan-1 deficient osteoblasts with osteoclast these increased OPG in supernatant caused decreased development of osteoclasts. Syndecan-1 and RANKL level were increased in serum of aged WT mice, whereas Syndecan-1 deficient mice showed high serum OPG concentration. However, bone structure of Syndecan-1 deficient mice was not different compared to wild type. In conclusion, Syndecan-1 could be regarded as a new modulator of bone-cell-communication via RANKL/OPG axis. This might be of high impact during bone regeneration or bone diseases like cancer where Syndecan-1 expression is known to be even more prevalent.


Asunto(s)
Huesos/citología , Comunicación Celular , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Sindecano-1/metabolismo , Envejecimiento/sangre , Animales , Animales Recién Nacidos , Desarrollo Óseo , Diferenciación Celular , Ratones Endogámicos C57BL , Modelos Biológicos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteoprotegerina/sangre , Sindecano-1/sangre , Sindecano-1/deficiencia
16.
Sci Rep ; 10(1): 16238, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004928

RESUMEN

Over the last years, murine in vivo magnetic resonance imaging (MRI) contributed to a new understanding of tissue composition, regeneration and diseases. Due to artefacts generated by the currently used metal implants, MRI is limited in fracture healing research so far. In this study, we investigated a novel MRI-compatible, ceramic intramedullary fracture implant during bone regeneration in mice. Three-point-bending revealed a higher stiffness of the ceramic material compared to the metal implants. Electron microscopy displayed a rough surface of the ceramic implant that was comparable to standard metal devices and allowed cell attachment and growth of osteoblastic cells. MicroCT-imaging illustrated the development of the callus around the fracture site indicating a regular progressing healing process when using the novel implant. In MRI, different callus tissues and the implant could clearly be distinguished from each other without any artefacts. Monitoring fracture healing using MRI-compatible implants will improve our knowledge of callus tissue regeneration by 3D insights longitudinal in the same living organism, which might also help to reduce the consumption of animals for future fracture healing studies, significantly. Finally, this study may be translated into clinical application to improve our knowledge about human bone regeneration.


Asunto(s)
Curación de Fractura , Fracturas Óseas/fisiopatología , Animales , Tornillos Óseos , Interfase Hueso-Implante , Cerámica , Modelos Animales de Enfermedad , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/metabolismo , Fracturas del Fémur/fisiopatología , Fijación Intramedular de Fracturas , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/metabolismo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Ratones , Microscopía Electrónica de Rastreo , Circonio
17.
Aging Cell ; 19(11): e13244, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33085187

RESUMEN

Bone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here, we identify microRNA-146a (miR-146a) as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR-146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR-146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR-146a-deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR-146a target genes Wnt1 and Wnt5a parallels bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR-146a-deficient mice are protected from ovariectomy-induced bone loss. In humans, the levels of miR-146a are increased in patients suffering fragility fractures in comparison with those who do not. These data identify miR-146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR-146a might be a powerful therapeutic target to prevent age-related bone dysfunctions such as the development of bone marrow adiposity and osteoporosis.


Asunto(s)
MicroARNs/genética , Osteoporosis/genética , Animales , Resorción Ósea/genética , Resorción Ósea/patología , Diferenciación Celular/fisiología , Epigénesis Genética , Femenino , Masculino , Ratones , MicroARNs/metabolismo , Osteoblastos/citología , Osteoporosis/patología , Proteína Wnt-5a/metabolismo , Proteína Wnt1/metabolismo
18.
J Orthop Translat ; 24: 1-11, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32489862

RESUMEN

BACKGROUND: Animal models are one of the first steps in translation of basic science findings to clinical practice. For tendon healing research, transgenic mouse models are important to advance therapeutic strategies. However, the small size of the structures complicates surgical approaches, histological assessment, and biomechanical testing. In addition, available models are not standardized and difficult to compare. How surgery itself affects the healing outcome has not been investigated yet. The focus of the study was to develop a procedure that includes a transection and microsurgical reconstruction of the Achilles tendon but, unlike other models, preserves the sciatic nerve. We wanted to examine how distinct parts of the technique influenced healing. METHODS: For this animal model study, we used 96 wild-type male C57BL/6 mice aged 8-12 weeks. We evaluated different suture techniques and macroscopically confirmed the optimal combination of suture material and technique to minimize tendon gap formation. A key element is the detailed, step-by-step illustration of the surgery. In addition, we assessed histological (Herovici and Alcian blue staining) outcome parameters at 1-16 weeks postoperatively. Microcomputed tomography (micro-CT) was performed to measure the bone volume of heterotopic ossifications (HOs). Biomechanical analyses were carried out using a viscoelastic protocol on the biomechanical testing machine LM1. RESULTS: A modified 4-strand suture combined with a cerclage for immobilization without transection of the sciatic nerve reliably eliminated gap formation. The maximal dorsal extension of the hindlimb at the upper ankle joint from the equinus position (limited by the immobilization cerclage) increased over time postoperatively (operation: 28.8 ± 2.2°; 1 week: 54 ± 36°; 6 weeks: 80 ± 11.7°; 16 weeks: 96 ± 15.8°, p > 0.05). Histological staining revealed a maturation of collagen fibres within 6 weeks, whereas masses of cartilage were visible throughout the healing period. Micro-CT scans detected the development of HOs starting at 4 weeks and further progression at 6 and 16 weeks (bone volume, 4 weeks: 0.07604 ± 0.05286 mm3; 6 weeks: 0.50682 ± 0.68841 mm3; 16 weeks: 2.36027 ± 0.85202 mm3, p > 0.001). In-depth micro-CT analysis of the different surgical elements revealed that an injury of the tendon is a key factor for the development of HOs. Immobilization alone does not trigger HOs. Biomechanical properties of repaired tendons were greatly altered and remained inferior 6 weeks after surgery. CONCLUSION: With this study, we demonstrated that the microsurgical technique greatly influences the short- and longer-term healing outcome. When the sciatic nerve is preserved, the best surgical reconstruction of the tendon defect is achieved by a 4-strand core suture in combination with a tibiofibular cerclage for postoperative immobilization. The cerclage promotes a gradual increase in the range of motion of the upper ankle joint, comparable with an early mobilization rehabilitation protocol. HO, as a key mechanism for poor tendon healing, is progressive and can be monitored early in the model. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The study enhances the understanding of model dependent factors of healing. The described reconstruction technique provides a reproducible and translational rodent model for future Achilles tendon healing research. In combination with transgenic strains, it can be facilitated to advance therapeutic strategies to improve the clinical results of tendon injuries.

19.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325713

RESUMEN

Integrins are a family of transmembrane proteins, involved in substrate recognition and cell adhesion in cross-talk with the extra cellular matrix. In this study, we investigated the influence of integrin α2ß1 on tendons, another collagen type I-rich tissue of the musculoskeletal system. Morphological, as well as functional, parameters were analyzed in vivo and in vitro, comparing wild-type against integrin α2ß1 deficiency. Tenocytes lacking integrin α2ß1 produced more collagen in vitro, which is similar to the situation in osseous tissue. Fibril morphology and biomechanical strength proved to be altered, as integrin α2ß1 deficiency led to significantly smaller fibrils as well as changes in dynamic E-modulus in vivo. This discrepancy can be explained by a higher collagen turnover: integrin α2ß1-deficient cells produced more matrix, and tendons contained more residual C-terminal fragments of type I collagen, as well as an increased matrix metalloproteinase-2 activity. A greatly decreased percentage of non-collagenous proteins may be the cause of changes in fibril diameter regulation and increased the proteolytic degradation of collagen in the integrin-deficient tendons. The results reveal a significant impact of integrin α2ß1 on collagen modifications in tendons. Its role in tendon pathologies, like chronic degradation, will be the subject of future investigations.


Asunto(s)
Colágeno/metabolismo , Integrina alfa2beta1/deficiencia , Metaloproteinasa 2 de la Matriz/metabolismo , Tendones/metabolismo , Tenocitos/metabolismo , Animales , Fenómenos Biomecánicos , Células Cultivadas , Colágeno/ultraestructura , Femenino , Fibroblastos/metabolismo , Gelatinasas/metabolismo , Integrina alfa2beta1/genética , Integrina alfa2beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteína-Lisina 6-Oxidasa/metabolismo , Tendones/citología , Tendones/enzimología , Tendones/ultraestructura
20.
Cells ; 9(3)2020 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156086

RESUMEN

Scaffold materials for bone regeneration are crucial for supporting endogenous healing after accidents, infections, or tumor resection. Although beneficial impacts of microtopological or nanotopological cues in scaffold topography are commonly acknowledged, less consideration is given to the interplay between the microscale and nanoscale. Here, micropores with a 60.66 ± 24.48 µm diameter ordered by closely packed collagen fibers are identified in pre-wetted Spongostan, a clinically-approved collagen sponge. On a nanoscale level, a corrugated surface of the collagen sponge is observable, leading to the presence of 32.97 ± 1.41 nm pores. This distinct micro- and nanotopography is shown to be solely sufficient for guiding osteogenic differentiation of human stem cells in vitro. Transplantation of Spongostan into a critical-size calvarial rat bone defect further leads to fast regeneration of the lesion. However, masking the micro- and nanotopographical cues using SiO2 nanoparticles prevents bone regeneration in vivo. Therefore, we demonstrate that the identified micropores allow migration of stem cells, which are further driven towards osteogenic differentiation by scaffold nanotopography. The present findings emphasize the necessity of considering both micro- and nanotopographical cues to guide intramembranous ossification, and might provide an optimal cell- and growth-factor-free scaffold for bone regeneration in clinical settings.


Asunto(s)
Regeneración Ósea/fisiología , Huesos/patología , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Animales , Huesos/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Colágeno/metabolismo , Espuma de Fibrina/metabolismo , Humanos , Masculino , Ratas Wistar , Andamios del Tejido/efectos adversos , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...