Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22275865

RESUMEN

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264207

RESUMEN

Duration of protection from SARS-CoV-2 infection in people with HIV (PWH) following vaccination is unclear. In a sub-study of the phase 2/3 the COV002 trial (NCT04400838), 54 HIV positive male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells >350 cells/ul) received two doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and MesoScale Discovery (MSD)), neutralisation, ACE-2 inhibition, gamma interferon ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that 6 months after vaccination the majority of measurable immune responses were greater than pre-vaccination baseline, but with evidence of a decline in both humoral and cell mediated immunity. There was, however, no significant difference compared to a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although were lower than wild type. Pre-existing cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater post-vaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the on-going policy to vaccinate PWH against SARS-CoV-2, and underpin the need for long-term monitoring of responses after vaccination.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-424138

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic necessitates the fast development of vaccines to meet a worldwide need. mRNA-based vaccines are the most promising technology for rapid and safe SARS-CoV-2 vaccine development and production. We have designed CVnCoV, a lipid-nanoparticle (LNP) encapsulated, sequence optimised mRNA-based SARS-CoV-2 vaccine that encodes for full length, pre-fusion stabilised Spike protein. Unlike other mRNA-based approaches, CVnCoV exclusively consists of non-chemically modified nucleotides and can be applied at comparatively low doses. Here we demonstrate that CVnCoV induces robust humoral and cellular responses in non-human primates (NHPs). Animals vaccinated with 8 g of CVnCoV were protected from challenge infection with SARS-CoV-2. Comprehensive analyses of pathological changes in challenged animals via lung histopathology and Computed Tomography (CT) scans gave no indication of enhanced disease upon CVnCoV vaccination. These results demonstrate safety, immunogenicity, and protective efficacy of CVnCoV in NHPs that extend our previously published preclinical data and provide strong support for further clinical testing in ongoing phase 2b/3 efficacy studies.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-301093

RESUMEN

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques, resembling the mild clinical cases of COVID-19 in humans. Immune responses against SARS-CoV-2 were also similar in both species and equivalent to those reported in milder infections and convalescent human patients. Importantly, we have devised a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the optimal study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of novel and repurposed interventions against SARS-CoV-2. Accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...