Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 381(6657): eade4995, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535739

RESUMEN

Few African Americans have been able to trace family lineages back to ancestors who died before the 1870 United States Census, the first in which all Black people were listed by name. We analyzed 27 individuals from Maryland's Catoctin Furnace African American Cemetery (1774-1850), identifying 41,799 genetic relatives among consenting research participants in 23andMe, Inc.'s genetic database. One of the highest concentrations of close relatives is in Maryland, suggesting that descendants of the Catoctin individuals remain in the area. We find that many of the Catoctin individuals derived African ancestry from the Wolof or Kongo groups and European ancestry from Great Britain and Ireland. This study demonstrates the power of joint analysis of historical DNA and large datasets generated through direct-to-consumer ancestry testing.


Asunto(s)
Negro o Afroamericano , Bases de Datos Genéticas , Humanos , Negro o Afroamericano/genética , Irlanda , Maryland , Estados Unidos , Análisis de Secuencia de ADN
2.
Nature ; 615(7954): 866-873, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36991187

RESUMEN

The urban peoples of the Swahili coast traded across eastern Africa and the Indian Ocean and were among the first practitioners of Islam among sub-Saharan people1,2. The extent to which these early interactions between Africans and non-Africans were accompanied by genetic exchange remains unknown. Here we report ancient DNA data for 80 individuals from 6 medieval and early modern (AD 1250-1800) coastal towns and an inland town after AD 1650. More than half of the DNA of many of the individuals from coastal towns originates from primarily female ancestors from Africa, with a large proportion-and occasionally more than half-of the DNA coming from Asian ancestors. The Asian ancestry includes components associated with Persia and India, with 80-90% of the Asian DNA originating from Persian men. Peoples of African and Asian origins began to mix by about AD 1000, coinciding with the large-scale adoption of Islam. Before about AD 1500, the Southwest Asian ancestry was mainly Persian-related, consistent with the narrative of the Kilwa Chronicle, the oldest history told by people of the Swahili coast3. After this time, the sources of DNA became increasingly Arabian, consistent with evidence of growing interactions with southern Arabia4. Subsequent interactions with Asian and African people further changed the ancestry of present-day people of the Swahili coast in relation to the medieval individuals whose DNA we sequenced.


Asunto(s)
Pueblo Africano , Asiático , Genética de Población , Femenino , Humanos , Masculino , Pueblo Africano/genética , Asiático/genética , Historia Medieval , Océano Índico , Tanzanía , Kenia , Mozambique , Comoras , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , India/etnología , Persia/etnología , Arabia/etnología , ADN Antiguo/análisis
4.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191217

RESUMEN

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Asunto(s)
Arqueología , Personal Militar , Arqueología/métodos , Europa (Continente) , Grecia , Historia Antigua , Humanos , Guerra
5.
Nature ; 610(7930): 112-119, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131019

RESUMEN

The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.


Asunto(s)
Pool de Genes , Migración Humana , Arqueología , ADN Antiguo/análisis , Dinamarca , Inglaterra , Femenino , Francia , Genética de Población , Genoma Humano/genética , Alemania , Historia Medieval , Migración Humana/historia , Humanos , Lenguaje , Masculino , Dinámica Poblacional , Armas/historia
6.
Science ; 377(6601): 72-79, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35771911

RESUMEN

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Asunto(s)
ADN Antiguo , ADN Mitocondrial , Migración Humana , Pueblo Asiatico/genética , Niño , ADN Mitocondrial/genética , Femenino , Historia Antigua , Migración Humana/historia , Humanos , Masculino , Micronesia , Oceanía
7.
Nature ; 601(7894): 588-594, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937049

RESUMEN

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age1. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of people of England and Wales from the Iron Age, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to the Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and the independent genetic trajectory in Britain is also reflected in the rise of the allele conferring lactase persistence to approximately 50% by this time compared to approximately 7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.


Asunto(s)
Arqueología , Agricultores , Europa (Continente) , Francia , Genoma Humano/genética , Migración Humana/historia , Humanos , Lactante , Reino Unido
8.
Nat Commun ; 12(1): 7283, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907168

RESUMEN

Relatively little is known about Nubia's genetic landscape prior to the influence of the Islamic migrations that began in the late 1st millennium CE. Here, we increase the number of ancient individuals with genome-level data from the Nile Valley from three to 69, reporting data for 66 individuals from two cemeteries at the Christian Period (~650-1000 CE) site of Kulubnarti, where multiple lines of evidence suggest social stratification. The Kulubnarti Nubians had ~43% Nilotic-related ancestry (individual variation between ~36-54%) with the remaining ancestry consistent with being  introduced through Egypt and ultimately deriving from an ancestry pool like that found in the Bronze and Iron Age Levant. The Kulubnarti gene pool - shaped over a millennium - harbors disproportionately female-associated West Eurasian-related ancestry. Genetic similarity among individuals from the two cemeteries supports a hypothesis of social division without genetic distinction. Seven pairs of inter-cemetery relatives suggest fluidity between cemetery groups. Present-day Nubians are not directly descended from the Kulubnarti Nubians, attesting to additional genetic input since the Christian Period.


Asunto(s)
Estatus Social , Egipto , Femenino , Fósiles , Pool de Genes , Flujo Genético , Variación Genética , Genética de Población , Genoma Humano/genética , Historia Antigua , Humanos , Masculino , Caracteres Sexuales , Sudán
9.
Nature ; 591(7850): 413-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33618348

RESUMEN

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , China , Producción de Cultivos/historia , Femenino , Haplotipos/genética , Historia Antigua , Humanos , Japón , Lenguaje/historia , Masculino , Mongolia , Nepal , Oryza , Polimorfismo de Nucleótido Simple/genética , Siberia , Taiwán
10.
Genome Res ; 31(3): 472-483, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33579752

RESUMEN

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.


Asunto(s)
ADN Antiguo/aislamiento & purificación , Cemento Dental/química , Diente/química , Humanos , Masculino , Diente/anatomía & histología
11.
Nature ; 590(7844): 103-110, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33361817

RESUMEN

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.


Asunto(s)
Arqueología , Genética de Población , Genoma Humano/genética , Migración Humana/historia , Islas , Dinámica Poblacional/historia , Arqueología/ética , Región del Caribe , América Central/etnología , Cerámica/historia , Genética de Población/ética , Mapeo Geográfico , Haplotipos , Historia Antigua , Humanos , Masculino , Densidad de Población , América del Sur/etnología
12.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470400

RESUMEN

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
13.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32386546

RESUMEN

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Asunto(s)
Antropología/métodos , ADN Antiguo/análisis , Flujo Génico/genética , América Central , ADN Mitocondrial/genética , Flujo Génico/fisiología , Genética de Población/métodos , Haplotipos , Humanos , Análisis de Secuencia de ADN , América del Sur
15.
Genome Res ; 30(3): 427-436, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32098773

RESUMEN

DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA. We show that ossicles perform comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data quantity and minimal differences in data quality across preservation conditions. Ossicles can be sampled from intact skulls or disarticulated petrous bones without damage to surrounding bone, and we argue that they should be used when available to reduce damage to human remains. Our results identify another optimal skeletal element for ancient DNA analysis and add to a growing toolkit of sampling methods that help to better preserve skeletal remains for future research while maximizing the likelihood that ancient DNA analysis will produce useable results.


Asunto(s)
ADN Antiguo/análisis , Osículos del Oído/química , Cóclea/química , Osículos del Oído/anatomía & histología , Osículos del Oído/embriología , Humanos , Análisis de Secuencia de ADN
16.
Nat Ecol Evol ; 4(3): 334-345, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094539

RESUMEN

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.


Asunto(s)
Agricultura , ADN Antiguo , Estudio de Asociación del Genoma Completo , África , Antropología , Emigración e Inmigración , Europa (Continente) , Humanos , Irán , Islas , Sicilia , España
17.
Nature ; 577(7792): 665-670, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969706

RESUMEN

Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group1-11. One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region12,13. However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.


Asunto(s)
Población Negra/genética , Población Negra/historia , Conducta Alimentaria/etnología , Migración Humana/historia , Filogenia , Alelos , Animales , Arqueología , Entierro , Camerún , Niño , Preescolar , Cromosomas Humanos Y/genética , ADN Antiguo/análisis , Femenino , Marcadores Genéticos/genética , Genética de Población , Genoma Humano/genética , Haplotipos/genética , Historia Antigua , Humanos , Lenguaje/historia , Masculino , Pan troglodytes/genética , Análisis de Componente Principal
18.
Cell ; 179(3): 729-735.e10, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31495572

RESUMEN

We report an ancient genome from the Indus Valley Civilization (IVC). The individual we sequenced fits as a mixture of people related to ancient Iranians (the largest component) and Southeast Asian hunter-gatherers, a unique profile that matches ancient DNA from 11 genetic outliers from sites in Iran and Turkmenistan in cultural communication with the IVC. These individuals had little if any Steppe pastoralist-derived ancestry, showing that it was not ubiquitous in northwest South Asia during the IVC as it is today. The Iranian-related ancestry in the IVC derives from a lineage leading to early Iranian farmers, herders, and hunter-gatherers before their ancestors separated, contradicting the hypothesis that the shared ancestry between early Iranians and South Asians reflects a large-scale spread of western Iranian farmers east. Instead, sampled ancient genomes from the Iranian plateau and IVC descend from different groups of hunter-gatherers who began farming without being connected by substantial movement of people.


Asunto(s)
ADN Antiguo/química , Genoma Humano , Migración Humana , Linaje , Población/genética , Pueblo Asiatico/genética , Evolución Molecular , Humanos , Irán , Pakistán
19.
Science ; 365(6457)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31488661

RESUMEN

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.


Asunto(s)
Pueblo Asiatico/genética , Granjas/historia , Migración Humana/historia , Población/genética , Asia Central , Asia Sudoriental , Flujo Génico , Historia Antigua , Humanos , Irán , Análisis de Secuencia de ADN
20.
Nat Commun ; 10(1): 3670, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431628

RESUMEN

Situated at over 5,000 meters above sea level in the Himalayan Mountains, Roopkund Lake is home to the scattered skeletal remains of several hundred individuals of unknown origin. We report genome-wide ancient DNA for 38 skeletons from Roopkund Lake, and find that they cluster into three distinct groups. A group of 23 individuals have ancestry that falls within the range of variation of present-day South Asians. A further 14 have ancestry typical of the eastern Mediterranean. We also identify one individual with Southeast Asian-related ancestry. Radiocarbon dating indicates that these remains were not deposited simultaneously. Instead, all of the individuals with South Asian-related ancestry date to ~800 CE (but with evidence of being deposited in more than one event), while all other individuals date to ~1800 CE. These differences are also reflected in stable isotope measurements, which reveal a distinct dietary profile for the two main groups.


Asunto(s)
Restos Mortales/citología , ADN/genética , Fósiles , Grupos Raciales/genética , Dieta , Migración Humana , Humanos , India , Región Mediterránea , Polimorfismo de Nucleótido Simple/genética , Datación Radiométrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...