Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 8(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35736077

RESUMEN

Conidium is the main infection unit and reproductive unit of pathogenic fungi. Exploring the mechanism of conidiation and its regulation contributes to understanding the pathogenicity of pathogenic fungi. Vib-1, a transcription factor, was reported to participate in the conidiation process. However, the regulation mechanism of Vib-1 in conidiation is still unclear. In this study, we analyzed the function of Vib-1 and its regulation mechanism in conidiation through knocking out and overexpression of Vib-1 in entomopathogenic fungus Metarhizium acridum. Results showed that the colonial growth of Mavib-1 disruption mutant (ΔMavib-1) was significantly decreased, and conidiation was earlier compared to wild type (WT), while overexpression of Mavib-1 led to a delayed conidiation especially when carbon or nitrogen sources were insufficient. Overexpression of Mavib-1 resulted in a conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. These results indicated that Mavib-1 acted as a positive regulator in vegetative growth and a negative regulator in conidiation by affecting utilization of carbon and nitrogen sources in M. acridum. Transcription profile analysis demonstrated that many genes related to carbon and nitrogen source metabolisms were differentially expressed in ΔMavib-1 and OE strains compared to WT. Moreover, Mavib-1 affects the conidial germination, tolerance to UV-B and heat stresses, cell wall integrity, conidial surface morphology and conidial hydrophobicity in M. acridum. These findings unravel the regulatory mechanism of Mavib-1 in fungal growth and conidiation, and enrich the knowledge to conidiation pattern shift of filamentous fungi.

2.
Acta Pharmacol Sin ; 43(9): 2289-2301, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35132192

RESUMEN

Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1ß reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1ß affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1ß expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 µM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1ß/p38 MAPK pathway.


Asunto(s)
Caspasa 1 , Conexina 43 , Infarto del Miocardio , Animales , Ratas , Adenosina Trifosfato/farmacología , Arritmias Cardíacas , Caspasa 1/metabolismo , Caspasa 1/farmacología , Inhibidores de Caspasas/farmacología , Caspasas , Comunicación Celular/efectos de los fármacos , Conexina 43/genética , Conexina 43/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Infarto del Miocardio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Serpinas , Proteínas Virales , Expresión Génica/efectos de los fármacos
3.
Eur J Pharmacol ; 920: 174830, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182545

RESUMEN

We previously demonstrated that GSK-3ß mediates NLRP3 inflammasome activation and IL-1ß production in cardiac fibroblasts (CFs) after myocardial infarction (MI). In this study, we show how GSK-3ß-mediated activation of the NLRP3 inflammasome/caspase-1/IL-1ß pathway leads to apoptosis and pyroptosis of cardiomyocytes (CMs) and CFs. Administration of lipopolysaccharide (LPS)/ATP to primary newborn rat cardiac fibroblasts (RCFs) led to increase in proteins of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, IL-1ß, and IL-18. Additionally, the expression of caspase-3 and N-terminal fragments of gasdermin D (N-GSDMD) and the Bax/Bcl-2 ratio increased. Administration of the GSK-3ß inhibitor SB216763 reduced the levels of apoptosis- and pyroptosis-related proteins regulated by NLRP3 inflammasome activation in RCFs. Next, we transferred the culture supernatant of LPS/ATP-treated RCFs to in vitro primary newborn rat cardiomyocytes (RCMs). The results showed that SB216763 attenuate the upregulation of the ratios of Bax/Bcl-2 and the expression of caspase-3 and N-GSDMD in RCMs. Direct stimulation of RCMs and H9c2 cells with recombinant rat IL-1ß increased the p-GSK-3ß/GSK-3ß and Bax/Bcl-2 ratios and the expression of caspase-3 and N-GSDMD, while both SB216763 and TLR1 (an IL-1ß receptor inhibitor) markedly reduced these effects, as assessed using propidium iodide positive staining and the lactate dehydrogenase release assay. The caspase-11 inhibitor wedelolactone decreased the expression level of N-GSDMD but did not alter the p-GSK-3ß/GSK-3ß ratio. Lastly, we established a Sprague-Dawley rat MI model to confirm that SB216763 diminished the increase in caspase-3 and N-GSDMD expression and the Bax/Bcl-2 ratio in the ischemic area. These data demonstrate that GSK-3ß regulates apoptosis and pyroptosis of RCMs and RCFs due to NLRP3 inflammasome activation in RCFs.


Asunto(s)
Inflamasomas , Piroptosis , Animales , Apoptosis , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Sprague-Dawley
5.
J Interv Card Electrophysiol ; 63(2): 239-248, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33611692

RESUMEN

BACKGROUND: Abnormal ion channel currents caused by myocardial electrical remodeling is one of the main causes of malignant arrhythmias. Glycogen synthase kinase 3ß (GSK-3ß) is the main therapeutic target following ischemia as it regulates nerve cell channels. However, few studies have investigated its role in myocardial electrical remodeling. The present study aimed to investigate the role of GSK-3ß in a rat myocardial infarction (MI)-induced electrical remodeling and potential effects on cardiac ionic channels including KCNJ2/Kir2.1/IK1. METHODS: Ligation of the left anterior descending artery in rats was performed to establish a MI model. The rats were randomly divided into three groups, the sham, MI, and MI + SB group. The animals in the latter group were administered SB216763 (GSK-3ß inhibitor) at a dose of 0.6 mg·kg-1·day-1. The ventricular function was assessed by echocardiography, electrocardiography, and histological analysis 7 days post-surgery. Serum was collected to measure lactate dehydrogenase and cardiac troponin I levels, and the mRNA and protein levels of the KCNJ2/Kir2.1/IK1 channel in the heart tissues were assessed. H9c2 cells were cultured to examine the effects of SB216763 on the protein expression of Kir2.1 channel under hypoxic conditions. RESULTS: The results revealed that SB216763 ameliorated acute cardiac injury and improved myocardial dysfunction. Moreover, SB216763 increased the mRNA and protein expression of Kir2.1 during MI. Furthermore, SB216763 treatment abrogated the decreased expression of Kir2.1 in H9c2 cells under hypoxic conditions. CONCLUSIONS: GSK-3ß inhibition upregulates Kir2.1 expression in a rat model of MI.


Asunto(s)
Indoles , Miocardio , Animales , Glucógeno Sintasa Quinasa 3 beta , Humanos , Indoles/farmacología , Maleimidas/farmacología , Ratas
6.
Front Pharmacol ; 12: 662726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349643

RESUMEN

The aim of this study was to investigate the effects of the GSK-3ß/NF-κB pathway on integrin-associated protein (CD47) expression after myocardial infarction (MI) in rats. An MI Sprague Dawley rat model was established by ligating the left anterior descending coronary artery. The rats were divided into three groups: Sham, MI, and SB + MI (SB216763) groups. Immunohistochemistry was used to observe the changes in cardiac morphology. A significant reduction in the sizes of fibrotic scars was observed in the SB + MI group compared to that in the MI group. SB216763 decreased the mRNA and protein expression of CD47 and NF-κB during MI. Primary rat cardiomyocytes (RCMs) and the H9c2 cell line were used to establish in vitro hypoxia models. Quantitative real-time PCR and western blotting analyses were conducted to detect mRNA and protein expression levels of CD47 and NF-κB and apoptosis-related proteins, respectively. Apoptosis of hypoxic cells was assessed using flow cytometry. SB216763 reduced the protein expression of CD47 and NF-κB in RCMs and H9c2 cells under hypoxic conditions for 12 h, and alleviated hypoxia-induced apoptosis. SN50 (an NF-κB inhibitor) also decreased CD47 protein expression in RCMs and H9c2 cells under hypoxic conditions for 12 h and protected cells from apoptosis. GSK-3ß upregulates CD47 expression in cardiac tissues after MI by activating NF-κB, which in turn leads to myocardial cell damage and apoptosis.

7.
Appl Environ Microbiol ; 87(19): e0090821, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288712

RESUMEN

Filamentous fungi conduct two types of conidiation, typical conidiation from mycelia and microcycle conidiation (MC). Fungal conidiation can shift between the two patterns, which involves a large number of genes in the regulation of this process. In this study, we investigated the role of a dipeptidase gene pepdA in conidiation pattern shift in Metarhizium acridum, which is upregulated in MC pattern compared to typical conidiation. Results showed that disruption of the pepdA resulted in a shift of conidiation pattern from MC to typical conidiation. Metabolomic analyses of amino acids showed that the levels of 19 amino acids significantly changed in ΔpepdA mutant. The defect of MC in ΔpepdA can be rescued when nonpolar amino acids, α-alanine, ß-alanine, or proline, were added into sucrose yeast extract agar (SYA) medium. Digital gene expression profiling analysis revealed that PEPDA mediated transcription of sets of genes which were involved in hyphal growth and development, sporulation, cell division, and amino acid metabolism. Our results demonstrated that PEPDA played important roles in the regulation of MC by manipulating the levels of amino acids in M. acridum. IMPORTANCE Conidia, as the asexual propagules in many fungi, are the start and end of the fungal life cycle. In entomopathogenic fungi, conidia are the infective form essential for their pathogenicity. Filamentous fungi conduct two types of conidiation, typical conidiation from mycelia and microcycle conidiation. The mechanisms of the shift between the two conidiation patterns remain to be elucidated. In this study, we demonstrated that the dipeptidase PEPDA, a key enzyme from the insect-pathogenic fungus Metarhizium acridum for the hydrolysis of dipeptides, is associated with a shift of conidiation pattern. The conidiation pattern of the ΔpepdA mutant was restored when supplemented with the nonpolar amino acids rather than polar amino acids. Therefore, this report highlights that the dipeptidase PEPDA regulates MC by manipulating the levels of amino acids in M. acridum.


Asunto(s)
Dipeptidasas/genética , Proteínas Fúngicas/genética , Metarhizium , Esporas Fúngicas/crecimiento & desarrollo , Aminoácidos/genética , Dipeptidasas/metabolismo , Dipéptidos/metabolismo , Proteínas Fúngicas/metabolismo , Metarhizium/enzimología , Metarhizium/genética , Metarhizium/fisiología
8.
J Invertebr Pathol ; 182: 107565, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676966

RESUMEN

Entomopathogenic fungi have been used as important biological control agents throughout the world. To improve the biocontrol efficacy of entomopathogenic fungi, many genes have been used to improve fungal virulence or tolerance to adverse conditions via modulating their expression with strong promoters. The Magas1 gene is specifically expressed during appressorium formation and contributes to the virulence in Metarhizium acridum. In this study, we analyzed the functional region of the promoter of Magas1 gene (PMagas1) in M. acridum using 5'-deletion technique with enhanced green fluoresces protein (EGFP) as a reporter. Results showed the full length of the PMagas1 was at least 897 bp. Two regions (-897 to -611 bp and -392 to -328 bp) were essential for the activity of PMagas1. An engineered M. acridum strain was constructed with PMagas1 driving the expression of a subtilisin-like proteinase gene Pr1A (PMagas1-PR1A). Bioassay showed that the virulence was significantly increased in PMagas1-PR1A strain compared to wild type strain. Pmagas1 promoter is suitable for the overexpression of some genes during the infection of entomopathogenic fungi, which avoids the waste of nutritional resources and the influence on other fungal characteristics during the saprophytic process of constitutive promoter.


Asunto(s)
Proteínas Fúngicas/genética , Metarhizium/genética , Metarhizium/patogenicidad , Proteínas Fúngicas/metabolismo , Virulencia/genética
9.
Pest Manag Sci ; 77(4): 1915-1924, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33300230

RESUMEN

BACKGROUND: Fungal cell wall integrity is vital for fungal pathogenesis and stress tolerance. Calcofluor white (CFW), a cell wall perturbing agent, inhibits fungal growth by binding chitin in the cell wall. The roles of CFW sensitive proteins remain insufficiently understood in pathogenic fungi. RESULTS: We investigated two calcofluor white hypersensitive proteins, MaCwh1 and MaCwh43, in the entomopathogenic fungus Metarhizium acridum. Both Green fluorescent protein (GFP)-tagged MaCwh1 and MaCwh43 localized at the endoplasmic reticulum. Our results showed that the ΔMacwh1 and ΔMacwh43 mutants were more sensitive to CFW and ultraviolet irradiation stress compared to wild-type and complement strains. ΔMacwh1 had a stronger sensitivity to these stresses than ΔMacwh43. Both ΔMacwh1 and ΔMacwh43 mutants showed smoother cell wall surface, and drastically reduced chitin and mannose glycoprotein level in the cell wall and glycerol level in conidia compared to wild type. Insect bioassay showed significantly attenuated virulence for both ΔMacwh1 and ΔMacwh43 mutants with impaired ability in penetrating the host cuticle. RNA-Seq analysis revealed that a large number of genes presumably involved in cell wall construction and modification, pathogenicity and stress response were down-regulated in both ΔMacwh1 and ΔMacwh43 mutants. CONCLUSIONS: These findings demonstrate that both Macwh1 and Macwh43 affect the fungal cell wall ultrastructure and contribute to the stress tolerance and pest control potential in M. acrdium. © 2020 Society of Chemical Industry.


Asunto(s)
Metarhizium , Animales , Bencenosulfonatos , Proteínas Fúngicas/genética , Metarhizium/genética , Esporas Fúngicas , Virulencia
10.
J Mol Cell Cardiol ; 149: 82-94, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991876

RESUMEN

Inflammasome-promoted sterile inflammation following cardiac damage is critically implicated in heart dysfunction after myocardial infarction (MI). Glycogen synthase kinase-3 (GSK-3ß) is a prominent mediator of the inflammatory response, and high GSK-3 activity is associated with various heart diseases. We investigated the regulatory mechanisms of GSK-3ß in activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in a rat model with successful induction of MI on days 2-28. An in vitro investigation was performed using newborn rat/human cardiomyocytes and fibroblast cultures under typical inflammasome stimulation and hypoxia treatment. GSK-3ß inhibition markedly improved myocardial dysfunction and prevented remodeling, with parallel reduction in the parameters of NLRP3 inflammasome activation after MI. GSK-3ß inhibition reduced NLRP3 inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes. GSK-3ß's interaction with activating signal cointegrator (ASC) as well as GSK-3ß inhibition reduced ASC phosphorylation and oligomerization at the tissues and cellular levels. Taken together, these data show that GSK-3ß directly mediates NLRP3 inflammasome activation, causing cardiac dysfunction in MI.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inflamasomas/metabolismo , Infarto del Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Indoles/farmacología , Inflamación/patología , Masculino , Maleimidas/farmacología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/enzimología , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , Ratas Sprague-Dawley , Remodelación Vascular/efectos de los fármacos
11.
Sci Total Environ ; 736: 139568, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32485376

RESUMEN

Subtropical forests are considerable carbon sinks in the northern hemisphere, yet are increasingly suffering from the impact of extreme drought. To better understand the dynamics and kinetics of forest soil carbon storage under long-term drought, a rainfall-reduction experiment was established in a subtropical evergreen forest of eastern China. Soil organic carbon (SOC) composition, microbial carbon metabolism and the interactions with soil microbial community structure were investigated across different soil aggregate size fractions. After five years' treatment of rainfall reduction, a significant loss of large macroaggregates, as well as an increase of microaggregates by over 100% was observed. Meanwhile, drought changed the composition of SOC, reducing the non-hydrolyzed carbon and humin contents in large- to medium-size macroaggregates. Microbial metabolizing capacity of polymeric compounds was also reduced especially in the above aggregate fractions, whereas the utilization of small-molecular compounds was more impacted in small macroaggregates and microaggregates. The changes in carbon metabolizing patterns were further associated with the abundance changes of specific microbial taxa, revealing the microbially mediated mechanism of soil carbon metabolism under long-term drought. In addition, carbon metabolism in microaggregates was particularly sensitive to the changes of soil moisture, suggesting long-term drought may continually influence the functional resistance of the microbial communities. Taken together, our results provide insights into how biotic and abiotic processes together influence the SOC metabolizing processes, continued monitoring and investigation of which shall contribute to better understanding of the dynamics and kinetics of SOC storage under the impact of long-term drought.


Asunto(s)
Carbono/análisis , Suelo , China , Sequías , Bosques , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...