Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001138

RESUMEN

Accurate and prompt determination of fire types is essential for effective firefighting and reducing damage. However, traditional methods such as smoke detection, visual analysis, and wireless signals are not able to identify fire types. This paper introduces FireSonic, an acoustic sensing system that leverages commercial speakers and microphones to actively probe the fire using acoustic signals, effectively identifying fire types. By incorporating beamforming technology, FireSonic first enhances signal clarity and reliability, thus mitigating signal attenuation and distortion. To establish a reliable correlation between fire type and sound propagation, FireSonic quantifies the heat release rate (HRR) of flames by analyzing the relationship between fire-heated areas and sound wave propagation delays. Furthermore, the system extracts spatiotemporal features related to fire from channel measurements. The experimental results demonstrate that FireSonic attains an average fire type classification accuracy of 95.5% and a detection latency of less than 400 ms, satisfying the requirements for real-time monitoring. This system significantly enhances the formulation of targeted firefighting strategies, boosting fire response effectiveness and public safety.

2.
JCO Clin Cancer Inform ; 8: e2400044, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39058967

RESUMEN

PURPOSE: Patients with advanced renal cell carcinoma (RCC) face significant challenges, stemming both from the complexities of the disease itself and the adverse effects of treatments. This study evaluated the feasibility and acceptability of a mobile health (mHealth) application tailored for education and symptom management of patients with advanced RCC receiving combined immune checkpoint inhibitor and tyrosine kinase inhibitor (ICI-TKI) therapy. METHODS: The primary end points were acceptability and feasibility. Acceptability was defined as the proportion of patients approached who consented to participate, setting a benchmark of at least 50% for this metric. Feasibility was gauged by the completion rate of the intervention among the participants; it required at least 50% of participants to fully complete the intervention and at least 70% to finish half of the administered questionnaires. The secondary end points included knowledge assessment and patient-reported outcomes (PROs). PROs were evaluated using validated instruments. To discern the changes between pre- and post-educational module quiz scores, we used the Wilcoxon signed-rank test. Time-course data of PROs were visualized using line plots and then compared using paired t-tests. RESULTS: From November 2022 to July 2023, 20 of 22 (90%) patients approached for the study consented and enrolled. Of the enrolled patients, 60% completed all questionnaires and knowledge assessments at every time point and 75% completed at least half of the surveys and questionnaires. Significant pre/post differences were noted in two of six quizzes in the knowledge assessment. This study population did not experience a significant change in PRO scores after starting therapy. CONCLUSION: The mHealth application designed for education and symptom management in patients with advanced RCC undergoing combination ICI-TKI has proven to be both acceptable and feasible, meeting previous research benchmarks.


Asunto(s)
Carcinoma de Células Renales , Estudios de Factibilidad , Inhibidores de Puntos de Control Inmunológico , Neoplasias Renales , Aplicaciones Móviles , Inhibidores de Proteínas Quinasas , Teléfono Inteligente , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Femenino , Masculino , Neoplasias Renales/tratamiento farmacológico , Persona de Mediana Edad , Anciano , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/administración & dosificación , Educación del Paciente como Asunto/métodos , Telemedicina , Adulto , Medición de Resultados Informados por el Paciente , Encuestas y Cuestionarios
3.
J Agric Food Chem ; 72(31): 17431-17443, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39021257

RESUMEN

The fungus Talaromyces hainanensis, isolated from the mangrove soil, was characterized as a novel species by morphology observation and phylogenetic analyses. Four new γ-lactam alkaloids talaroilactams A-D (1-4) and two reported compounds harzianic acid (5) and isoharzianic acid (6) were identified from the fungus T. hainanensis WHUF0341, assisted by OSMAC along with molecular networking approaches. Their structures were determined through ECD calculations and spectroscopic analyses. Moreover, the biosynthetic route of 1-4 was also proposed. Compound 1 displayed potent cytotoxicity against HepG2 cell lines, with an IC50 value of 10.75 ± 1.11 µM. In addition, network pharmacology was employed to dissect the probable mechanisms contributing to the antihepatocellular carcinoma effects of compound 1, revealing that cytotoxicity was mainly associated with proteolysis, negative regulation of autophagy, inflammatory response, and the renin-angiotensin system. These results not only expanded the chemical space of natural products from the mangrove associated fungi but also afforded promising lead compounds for developing the antihepatocellular carcinoma agents.


Asunto(s)
Alcaloides , Antineoplásicos , Lactamas , Talaromyces , Talaromyces/química , Talaromyces/metabolismo , Humanos , Alcaloides/farmacología , Alcaloides/química , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Lactamas/química , Lactamas/farmacología , Filogenia , Estructura Molecular , Humedales , Rhizophoraceae/microbiología , Rhizophoraceae/química
4.
Nat Biomed Eng ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914800

RESUMEN

Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.

5.
J Hazard Mater ; 473: 134633, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772109

RESUMEN

Ion-adsorbed rare earth minerals are rich in medium and heavy rare earth (RE), which are important strategic resources. In this article, a novel approach for the extraction of RE from ion adsorbed minerals was developed. Through a comprehensive assessment of their extraction and separation performance, the hydrophobic deep eutectic solvents (HDES) with a composition of trioctylphosphine oxide (TOPO): dodecanol (LA): 2-thiophenoyltrifluoroacetone (HTTA) = 1:1:1 was determined as the optimal configuration. Under optimized conditions, only RE were extracted by the HDES, while Al, Ca, Mg were not extracted at all. The HDES based extraction obviated the need for diluent such as kerosene, eliminating the generation of impurity removal residues. The RE in the stripping solution could be successfully enriched by saponified lauric acid, achieving an impressive precipitation rate of 99.7%. The RE precipitate underwent further enrichment, resulting in a RE concentration of 176 g/L (REO = 210 g/L). Unlike industrial precipitants such as oxalic acid and ammonium bicarbonate, lauric acid can be effectively recycled, thereby avoiding a large amount of wastewater and carbon dioxide emissions. The obtained RE solution product exhibits high yield and purity, this study provides an eco-friendly and high-yield approach for extracting RE.

6.
Bioorg Chem ; 148: 107423, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733751

RESUMEN

Viscosity and sulfur dioxide derivatives were significant indicators for the assessment of health threat and even cancers, therefore, on-site and real time detection of viscosity and sulfur dioxide derivatives has obtained considerable attentions. An FRET-based fluorescence probe JZX was designed and synthesized based on a novel energy donor of N,N-diethyl-4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzamide fluorophore. JZX exhibited a large Stokes shift (230 nm), high energy transfer efficiency, wide emission channel gap (135 nm) and excellent stability and biocompatibility. JZX detected sulfur dioxide with low detection limit (55 nM), fast responding (16 min), high selectivity and sensitivity. Additionally, JZX tend to target endoplasmic reticulum of which normal metabolism will be disturbed by the abnormal levels of viscosity and sulfur dioxide derivatives. Prominently, JZX could concurrently detect viscosity and sulfur dioxide derivatives depending on different fluorescence signals in living cells for the screening of cancer cells. Hence, probe JZX will be a promising candidate for the detection of viscosity and sulfur dioxide derivatives, and even for the diagnosis of liver cancers.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Sulfitos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Viscosidad , Sulfitos/análisis , Estructura Molecular , Dióxido de Azufre/análisis , Imagen Óptica , Células HeLa
7.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766215

RESUMEN

Oxytocin is a neuropeptide thought to play a central role in regulating social and emotional behavior. Current techniques for neuropeptide imaging are generally limited in spatial and temporal resolution, real-time imaging capacity, selectivity for oxytocin over vasopressin, and application in young and non-model organisms. To avoid the use of endogenous oxytocin receptors for oxytocin probe development, we employed a protocol to evolve purely synthetic molecular recognition on the surface of near-infrared fluorescent single-walled carbon nanotubes (SWCNT) using single-stranded DNA (ssDNA). This probe reversibly undergoes up to a 172% fluorescence increase in response to oxytocin with a K d of 4.93 µM. Furthermore, this probe responds selectively to oxytocin over oxytocin analogs, receptor agonists and antagonists, and most other neurochemicals. Lastly, we show our probe can image synaptic evoked oxytocin release in live mouse brain slices. Optical probes with the specificity and resolution requisite to image endogenous oxytocin signaling can advance the study of oxytocin neurotransmission for its role in both health and disease.

8.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567994

RESUMEN

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Asunto(s)
Nanopartículas , Neoplasias , Vacunas , Animales , Ratones , Neoplasias/terapia , Adyuvantes Inmunológicos , Inmunoterapia/métodos , Nanopartículas/química
9.
Chem Sci ; 15(10): 3545-3551, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455003

RESUMEN

MnO2 is a desired cathode candidate for aqueous zinc batteries. However, their cycling stability is seriously limited by active material dissolution, and pre-addition of Mn2+ salts in electrolytes is widely required to shift the dissolution equilibrium. Herein, we synthesize a polydopamine (PDA) coated MnO2 composite material (MnO2/PDA) to realize stable cycling in zinc cells without relying on pre-added Mn2+. The functional groups on PDA exhibit strong coordination ability with the Mn active material. It not only confines dissolved species within the cathode during discharge, but also enhances their deposition back to the cathode during charge to retrieve the active material. Thanks to this effect, the cathode achieves 81.1% capacity retention after 2000 cycles at 1 A g-1 in the 1 M ZnSO4 electrolyte, superior to 37.3% with the regular MnO2 cathode. This work presents an effective strategy to realize the stable cycling of manganese oxide cathode materials in aqueous zinc batteries.

10.
J Control Release ; 368: 768-779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492861

RESUMEN

Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults with a 5-year survival rate of 30.5%. These poor patient outcomes are attributed to tumor relapse, stemming from ineffective innate immune activation, T cell tolerance, and a lack of immunological memory. Thus, new strategies are needed to activate innate and effector immune cells and evoke long-term immunity against AML. One approach to address these issues is through Stimulator of Interferon Genes (STING) pathway activation, which produces Type I Interferons (Type I IFN) critical for innate and adaptive immune activation. Here, we report that systemic immunotherapy with a lipid-based nanoparticle platform (CMP) carrying Mn2+ and STING agonist c-di-AMP (CDA) exhibited robust anti-tumor efficacy in a mouse model of disseminated AML. Moreover, CMP immunotherapy combined with immune checkpoint blockade against cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) elicited robust innate and adaptive immune activation with enhanced cytotoxic potential against AML, leading to extended animal survival after re-challenge with AML. Overall, this CMP combination immunotherapy may be a promising approach against AML and other disseminated cancer.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Nanopartículas , Neoplasias , Ratones , Adulto , Animales , Humanos , Manganeso , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfocitos T , Inmunoterapia , Inmunidad Innata
11.
Chem Sci ; 15(12): 4403-4415, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516067

RESUMEN

It is important to develop materials with environmental stability and long device shelf life for use in organic field-effect transistors (OFETs). The microscopic, molecular-level nature of the organic layer in OFETs is not yet well understood. The stability of geometric and electronic structures and the regulation of the external electric field (EEF) on the charge transport properties of four typical homogeneous organic semiconductors (OSCs) were investigated by density functional theory (DFT). The results showed that under the EEF, the structural changes in single-bond linked oligomers were more sensitive and complex than those of condensed molecules, and there were non-monotonic changes in their reorganization energy (λ) during charge transport under an EEF consisting of decreases and then increases (Series D). The change in λ under an EEF can be preliminarily and qualitatively determined by the change in the frontier molecular orbitals (FMOs) - the number of C-atoms with nonbonding characteristics. For single-bonded molecules, the transfer integral is basically unchanged under a low EEF, but it will greatly change at a high EEF. Because the structure and properties of the molecule will greatly change under different EEFs, the effect of an EEF should be fully considered when determining the intrinsic mobility of OSCs, which could cause a deviation 0.3-20 times in mobility. According to detailed calculations, one heterogeneous oligomer, TH-BTz, was designed. Its λ can be greatly reduced under an EEF, and the change in the energy level of FMOs can be adjusted to different degrees. This study provides a reasonable idea for verification of the experimental mobility value and also provides guidance for the directional design of stable high-mobility OSCs.

12.
Exp Ther Med ; 27(3): 117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361515

RESUMEN

Liquiritin (LIQ) is a flavonoid known for its cardioprotective properties, extracted from Glycyrrhiza uralensis Fisch. The purpose of the present study was to investigate the protective mechanism of LIQ against hypoxia/reoxygenation (H/R) injury through in vitro experiments, with the goal of enhancing its pharmacological effects. Initially, network pharmacology was employed to explore the targets and mechanisms of LIQ. Subsequently, an in vitro H/R model was established using H9c2 cells. Potential targets for LIQ and myocardial ischemia-reperfusion injury (MIRI) were identified through online databases. The STRING, Cytoscape and DAVID databases were used to extract intersecting targets and mechanisms. In vitro experiments were conducted to validate these findings, assessing cardiac enzymes, oxidative stress indicators, mitochondrial fluorescence, apoptotic fluorescence, inflammation and related protein expression. The network pharmacological analysis revealed that the protective effects of LIQ on MIRI involve oxidative stress, inflammation and apoptosis. The results of in vitro experimental validation demonstrated that LIQ significantly reduced the activities of lactated dehydrogenase and creatine kinase isoenzyme-MB (P<0.05 or 0.01), as well as the level of malondialdehyde (P<0.01). It also inhibited the production of reactive oxygen species (P<0.01), the release of inflammatory factors (P<0.05 or 0.01) and apoptosis (P<0.01). By contrast, the LIQ pre-treatment group exhibited a significant increase in mitochondrial membrane potential level (P<0.05 or 0.01) and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase (P<0.05 or 0.01). Furthermore, LIQ reduced the protein expressions of TNF-α receptor type 1 (TNFR1) and MMP9, along with the level of NF-κB phosphorylation (P<0.05 or 0.01). In conclusion, LIQ mitigated H/R-induced cardiomyocyte injury through mechanisms that may involve antioxidants, anti-apoptotic effects, protection against mitochondrial damage and suppression of inflammatory levels. These effects are achieved via inhibition of the TNFR1/NF-κB/MMP9 pathway.

13.
Front Pharmacol ; 15: 1341651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362143

RESUMEN

Background: Cholestasis is a common pathological manifestation dominated by accumulation of potentially toxic biliary compounds. Na+-taurocholate cotransporting polypeptide (NTCP) plays a critical role in protection from cholestasis and can be targeted therapeutically. Chishao (Paeoniae Radix Rubra) is a clinically efficacious agent for treating cholestasis, but the underlying mechanism has not been fully clarified. Objective: To evaluate the effects of Chishao on the expression of NTCP in rats with alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. Methods: Chishao extracts were obtained by water decoction. Cholestasis model induced by ANIT in rats were established. Thirty rats were divided into five groups: control group (C), ANIT model group (M), 10 g/kg Chishao group (LD), 20 g/kg Chishao group (MD) and 40 g/kg Chishao group (HD). The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), direct bilirubin (DB), alkaline phosphatase (ALP) and total bile acid (TBA) were detected. The mRNA and protein expression of NTCP, multidrug resistance associated protein 2 (MRP2) and bile salt export pump (BSEP) were detected by reverse transcription qPCR and Western blotting respectively. To assess the effects of Chishao on NTCP, MRP2 and BSEP localized at the membrane of hepatocytes, an in vitro experiment involving primary hepatocytes was conducted via the utilization of laser scanning confocal microscopy. Results: The extracts of Chishao significantly improved serum ALT, AST, ALP, TB, DB and TBA (p < 0.05), especially ALP in the HD group (p < 0.01). The histological pathological findings were also reversed in LD, MD and HD groups. The mRNA level of MRP2 was significantly downregulated after treatment with ANIT, whereas it was reversed in MD and HD groups (p < 0.05). The mRNA expression of NTCP was significantly downregulated after ANIT treatment, but dramatically upregulated in the HD group. The expressions of BSEP and MRP2 were similar, but that of NTCP decreased after ANIT treatment, which was reversed significantly by Chishao extracts in a dose-dependent manner. The expression of NTCP in hepatocytes from rats increased dose-dependently after Chishao treatment in vitro. Conclusion: Chishao extracts can improve the serum and histological performances of intra-hepatic cholestasis caused by ANIT, probably by working on transport proteins in liver cell membranes.

14.
J Fungi (Basel) ; 10(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38392816

RESUMEN

Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.

15.
BMC Psychiatry ; 24(1): 10, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166836

RESUMEN

BACKGROUND: Low-intensity cognitive behavioural therapy (LICBT) has been recommended as a primary intervention in the tiered care for mild to moderate generalised anxiety disorder. However, LICBT for generalised anxiety disorder are markedly diverse and efficacy data on various outcomes have not been systematically reviewed. This meta-analysis aimed to synthesise effect sizes of three NICE-recommended LICBT for generalised anxiety disorder: non-facilitated self-help, guided self-help, and psychoeducational groups. METHODS: A systematic literature review of randomised controlled trials (RCTs) examining LICBT for generalised anxiety disorder in the last 23 years (2000-2023) was conducted. Efficacy data for anxiety, depression, and worry outcomes were separately meta-analysed. The study was reported following the PRISMA guidelines. RESULTS: The systematic review identified 12 RCTs out of 1205 papers. The three meta-analyses consisted of 12 (anxiety), 11 (depression), and 9 (worry) effect sizes respectively, including total sample sizes of 1201 (anxiety), 1164 (depression), and 908 (worry). The adjusted effect sizes for reductions in anxiety (g = -0.63), depression (g = -0.48), and worry (g = -0.64) were all in the medium range, favouring LICBT over control conditions. Between-study heterogeneity was significant on anxiety and worry, with no specific moderators identified by meta-regression. CONCLUSIONS: LICBT has shown promise as an effective and efficient treatment modality for individuals with generalised anxiety disorder. Future research comparing various LICBT subtypes and treatment components will further inform clinical practice. TRIAL REGISTRATION: This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO; record ID CRD42021285590).


Asunto(s)
Trastornos de Ansiedad , Terapia Cognitivo-Conductual , Humanos , Ansiedad/terapia , Trastornos de Ansiedad/psicología , Terapia Cognitivo-Conductual/métodos , Revisiones Sistemáticas como Asunto
16.
Angew Chem Int Ed Engl ; 63(9): e202316082, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38196064

RESUMEN

Aqueous zinc-sulfur (Zn-S) batteries show great potential for unlocking high energy and safety aqueous batteries. Yet, the sluggish kinetic and poor redox reversibility of the sulfur conversion reaction in aqueous solution challenge the development of Zn-S batteries. Here, we fabricate a high-performance Zn-S battery using highly water-soluble ZnI2 as an effective catalyst. In situ experimental characterizations and theoretical calculations reveal that the strong interaction between I- and the ZnS nanoparticles (discharge product) leads to the atomic rearrangement of ZnS, weakening the Zn-S bonding, and thus facilitating the electrochemical oxidation reaction of ZnS to S. The aqueous Zn-S battery exhibited a high energy density of 742 Wh kg(sulfur) -1 at the power density of 210.8 W kg(sulfur) -1 and good cycling stability over 550 cycles. Our findings provide new insights about the iodide catalytic effect for cathode conversion reaction in Zn-S batteries, which is conducive to promoting the future development of high-performance aqueous batteries.

17.
Chem Commun (Camb) ; 60(10): 1317-1320, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38197249

RESUMEN

Zn metal anodes in aqueous batteries experience inhomogeneous deposition and corrosion issues. Herein, we introduced, at a low concentration, dioxane (DX) as an electrolyte additive to stabilize a Zn anode. The oxygen sites of DX endowed it with a strong affinity for Zn and Zn2+, resulting in its adsorption onto the Zn electrode surface and its coordination with Zn2+ locally. The Zn2+-DX species exhibited a decreased lowest unoccupied molecular orbital energy level relative to those of water-involved components. The DX additive not only inhibited side reactions but also generated a stable solid-electrolyte interphase on the Zn electrode, ensuring a uniform Zn deposition. As a result of including the additive, the cycle life of the Zn symmetric cell was extended from 99 h to 2100 h, and the coulombic efficiency in Zn//Cu cell reached 99.5%.

18.
J Environ Manage ; 351: 119788, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38100857

RESUMEN

A novel rare earth separation system composed of lauric acid (LA) and primary ammonium (RNH2) was studied. Compared with individual LA and RNH2, the mixed extraction system can significantly improve the extraction and separation ability of rare earth (RE). When LA and RNH2 are mixed in an equal molar ratio, the synergistic coefficient for extracting Nd(III) in the system reaches 136.85. Effective separation of Nd from Co and Ni can be achieved, with the separation coefficients of 1503 and 2762 for Nd/Co and Nd/Ni, respectively. The ion association mechanism of developed extraction system can avoid the generation of saponification wastewater. Thus, the negative impact of saponification wastewater on the economy and environment can be reduced. The extraction system is simple to be prepared and easy to be stripped, which helps to reduce acid and alkali consumption. Application of this extraction system can effectively realize the separation of RE elements La, Ce, Pr, Nd and transition metals Co, Ni, Mn in nickel-metal hydride (NiMH) battery. This paper provides a new strategy for the development of ionic liquid saponification technology without saponified wastewater.


Asunto(s)
Ácidos Láuricos , Metales de Tierras Raras , Níquel , Aminas , Aguas Residuales , Metales
19.
Chemosphere ; 346: 140601, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918536

RESUMEN

Due to the diversity and variability of harmful ions in polluted water bodies, the selective removal and separation for specific ions is of great significance in water purification and resource processes. Capacitive deionization (CDI), an emerging desalination technology, shows great potential to selectively remove harmful ionic pollutants and further recover valuable ions because of the simple operation and low energy consumption. Researchers have done a lot of work to investigate ion selectivity utilizing CDI, including both theoretical and experimental studies. Nevertheless, in the investigation of selective mechanisms, phenomena where carbon materials exhibit entirely opposite selectivity require further analysis. Furthermore, there is a need to summarize the specific chemical reaction mechanisms, including the formation of hydrogen bonds, complexation reactions, and ligand exchanges, within selective electrodes, which have not been thoroughly examined in detail previously. In order to fill these gaps, in this review, we summarized the recent progress of CDI technologies for ion selective separation, and explored the selective separation mechanism of CDI from three aspects: selective physical adsorption, specific chemical reaction, and the utilization of selective barriers. Additionally, this review analyzes in detail the formation process of chemical bonds and ion conversion pathways when ions interact with electrode materials. Finally, some significant development prospects and challenges were offered for the future selective CDI systems. We believe the review will provide new insights for researchers in the field of ion selective separation.


Asunto(s)
Carbono , Purificación del Agua , Iones/química , Electrodos , Adsorción
20.
Chem Sci ; 15(1): 230-237, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131071

RESUMEN

The Zn metal anode in aqueous Zn batteries faces a number of challenges including instable deposition and corrosion issues. Here, we present an interface environment regulation for a Zn electrode with a low concentration electrolyte additive of 0.1 m 3-aminobenzenesulfonic acid (ASA). ASA prefers to adsorb on the Zn surface over water and creates an ASA-rich interface. It further enters the Zn2+ solvation sheath locally, which shifts the lowest unoccupied molecular orbital from solvated water to ASA. The hydrogen evolution reaction from solvated water reduction is inhibited, and the reduction of solvated ASA generates a stable solid-electrolyte interphase composed of the ion conductor ZnS covered by organic-inorganic mixed components. With the resulting homogenized Zn deposition, continuous Zn stripping in symmetric cells reaches 99.7% depth of discharge (DOD) at a current density of 2 mA cm-2, whereas cell short-circuit takes place at 11.4% DOD in the ASA free ZnSO4 electrolyte. The repeated stripping/plating also realizes 1100 h cycle life at 2 mA cm-2, and a 99.54% stabilized coulombic efficiency is obtained for 500 cycles at 10 mA cm-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA