Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 152, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816767

RESUMEN

BACKGROUND: X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. METHODS: hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. RESULTS: ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. CONCLUSIONS: The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.


Asunto(s)
Proteínas del Ojo , Terapia Genética , Células Madre Pluripotentes Inducidas , Mutación , Organoides , Retina , Retinosquisis , Retinosquisis/genética , Retinosquisis/terapia , Retinosquisis/patología , Retinosquisis/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Terapia Genética/métodos , Organoides/metabolismo , Retina/metabolismo , Retina/patología , Masculino , Diferenciación Celular
2.
Stem Cell Res ; 73: 103263, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011758

RESUMEN

X-linked retinoschisis (XLRS) is one of the most common retinal genetic diseases with progressive visual impairment in childhood affecting males. It is manifested with macular and/or peripheral schisis in neural retinas with no effective treatment. Previously, we successfully generated a human-induced pluripotent stem cell (iPSC) line from an XLRS patient carrying the hemizygous RS1 c. 304C > T (p.R102W) mutation. Here, we corrected the c.304C > T mutation in the RS1 gene using CRISPR/Cas9 technology to generate an isogenic control. This cell line is valuable for the study of XLRS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinosquisis , Masculino , Humanos , Retinosquisis/genética , Retinosquisis/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Retina/metabolismo , Línea Celular , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo
3.
Stem Cell Res Ther ; 14(1): 340, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012786

RESUMEN

Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Humanos , Células Madre Pluripotentes Inducidas/patología , Retina/patología , Degeneración Retiniana/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/patología , Organoides
4.
PLoS One ; 18(8): e0289845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37561759

RESUMEN

With the rapid growth and wide application of digital technology, enterprises have entered the digital era with both opportunities and challenges existing. Mergers and acquisitions are one of the most efficient ways to integrate resources and achieve profit growth, giving enterprises advantages in competing in the new mode of economic growth. Based on this, this research tries to explore whether the development of digital finance will contribute to the emergence of M&As activities through combining M&As data of the Chinese stock market with the digital finance inclusion index between 2012 and 2020. The results show that the development of digital finance largely influences M&As activities through lower acquirers' financial constraints. We further replace digital finance with three sub-indexes including coverage breadth, usage depth, and digitalization level to explore the impact of different dimensions of digital finance on M&As. Results show that coverage breadth plays a more important role. In addition, heterogeneity tests reveal that the relationship between the development of digital finance and M&As activities varies significantly. The influences of digital finance on private and western and central enterprises are more significant compared with state-owned and eastern enterprises. According to the study, since the development of digital finance can be an efficient way to ease financial constraints and boost M&As activities, the government should promote the development of digital finance while companies strive to make the most use of it.


Asunto(s)
Tecnología Digital , Desarrollo Económico , Industrias , China , Tecnología Digital/economía , Tecnología Digital/organización & administración , Investigación Empírica , Organización de la Financiación/economía , Organización de la Financiación/organización & administración , Industria Manufacturera/economía , Industria Manufacturera/organización & administración , Industrias/economía , Industrias/organización & administración
5.
Biofabrication ; 15(3)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963105

RESUMEN

The three-dimensional (3D) retinal organoids (ROs) derived from human induced pluripotent stem cells (hiPSCs), mimicking the growth and development of the human retina, is a promising model for investigating inherited retinal diseasesin vitro. However, the efficient generation of homogenous ROs remains a challenge. Here we introduce a novel polydimethylsiloxane (PDMS) microwell platform containing 62 V-bottom micro-cavities for the ROs differentiation from hiPSCs. The uniform adherent 3D ROs could spontaneously form using neural retina (NR) induction. Our results showed that the complex of NR (expressing VSX2), ciliary margin (CM) (expressing RDH10), and retinal pigment epithelium (RPE) (expressing ZO-1, MITF, and RPE65) developed in the PDMS microwell after the differentiation. It is important to note that ROs in PDMS microwell platforms not only enable one-stop assembly but also maintain homogeneity and mature differentiation over a period of more than 25 weeks without the use of BMP4 and Matrigel. Retinal ganglion cells (expressing BRN3a), amacrine cells (expressing AP2a), horizontal cells (expressing PROX1 and AP2α), photoreceptor cells for cone (expressing S-opsin and L/M-opsin) and rod (expressing Rod opsin), bipolar cells (expressing VSX2 and PKCα), and Müller glial cells (expressing GS and Sox9) gradually emerged. Furthermore, we replaced fetal bovine serum with human platelet lysate and established a xeno-free culture workflow that facilitates clinical application. Thus, our PDMS microwell platform for one-stop assembly and long-term culture of ROs using a xeno-free workflow is favorable for retinal disease modeling, drug screening, and manufacturing ROs for clinical translation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Especies Reactivas de Oxígeno , Retina , Diferenciación Celular , Organoides , Opsinas , Dimetilpolisiloxanos , Impresión Tridimensional
6.
Stem Cell Res ; 64: 102911, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36103774

RESUMEN

Retinitis pigmentosa (RP) is one of the most common inherited retinal diseases characterized by nyctalopia, progressive vision loss and visual field contraction. we previously generated an induced pluripotent stem cell line (CSUASOi004-A) from a RP patient with heterozygous PRPF6 c.2699 G>A (p.R900H) mutation. Here we corrected the PRPF6 c.2699 G>A mutation genetically using CRISPR/Cas9 technology to generate an isogenic control (CSUASOi004-A-1), which can provide a valuable resource in the research of the disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Heterocigoto , Mutación/genética , Retina/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/genética
7.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012314

RESUMEN

Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs; CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further investigate the underlying molecular and pathological mechanisms. The results showed the irregular morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the patient's iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and exhibited impaired cell polarity and barrier function. This study will benefit the understanding of PRPF6-related RPE cells and future cell therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Mutación , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Retinitis Pigmentosa/metabolismo , Factores de Transcripción/metabolismo
8.
Exp Eye Res ; 222: 109158, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35780904

RESUMEN

Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is critically involved in the occurrence of subretinal fibrosis. This study aimed to investigate the role of enhancer of zeste homolog 2 (EZH2) in EMT of human primary RPE cells and the underlying mechanisms of the anti-fibrotic effect of EZH2 suppression. Primary cultures of human RPE cells were treated with TGF-ß1 for EMT induction. EZH2 was silenced by siRNA to assess the expression levels of epithelial and fibrotic markers using qRT-PCR, Western blot, and immunofluorescence staining assay. Furthermore, the cellular migration, proliferation and barrier function of RPE cells were evaluated. RNA-sequencing analyses were performed to investigate the underlying mechanisms of EZH2 inhibition. Herein, EZH2 silencing up-regulated epithelial marker ZO-1 and downregulated fibrotic ones including α-SMA, fibronectin, and collagen 1, alleviating EMT induced by TGF-ß1 in RPE cells. Moreover, silencing EZH2 inhibited cellular migration and proliferation, but didn't affect cell apoptosis. Additionally, EZH2 suppression contributed to improved barrier functions after TGF-ß1 stimulation. The results from RNA sequencing suggested that the anti-fibrotic effect of EZH2 inhibition was associated with the MAPK signaling pathway, cytokine-cytokine receptor interaction, and the TGF-beta signaling pathway. Our findings provide evidence that the suppression of EZH2 might reverse EMT and maintain the functions of RPE cells. EZH2 could be a potential therapeutic avenue for subretinal fibrosis.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Células Epiteliales , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Proteína Potenciadora del Homólogo Zeste 2/genética , Células Epiteliales/metabolismo , Fibrosis , Humanos , Epitelio Pigmentado de la Retina/citología , Factor de Crecimiento Transformador beta1/farmacología
9.
Stem Cell Res ; 59: 102637, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34959203

RESUMEN

Diabetic retinopathy (DR) is one of the most common and severe microvascular complications of diabetes, and the leading cause of preventable blindness in working-aged people. Here, we generated an induced pluripotent stem (iPS) cell line using blood-derived cells from a patient with DR. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with Sendai virus.

10.
Front Bioeng Biotechnol ; 9: 709488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568299

RESUMEN

Suspended spheroid culture using ultralow attachment plates (ULAPs) is reported to effect corneal fibroblast reprogramming. Polydimethylsiloxane (PDMS), with hydrophobic and soft substrate properties, facilitates adherent spheroid formation that promotes cellular physical reprogramming into stem-like cells without using transcription factors. However, it is still unknown whether the biophysical properties of PDMS have the same effect on adult human corneal keratocyte reprogramming. Here, PDMS and essential 8 (E8) medium were utilized to culture keratocyte spheroids and fibroblast spheroids, and the reprogramming results were compared. We provide insights into the probable mechanisms of the PDMS effect on spheroids. qPCR analysis showed that the expression of some stem cell marker genes (OCT4, NANOG, SOX2, KLF4, CMYC, ABCG2 and PAX6) was significantly greater in keratocyte spheroids than in fibroblast spheroids. The endogenous level of stemness transcription factors (OCT4, NANOG, SOX2, KLF4 and CMYC) was higher in keratocytes than in fibroblasts. Immunofluorescence staining revealed Klf4, Nanog, Sox2, ABCG2 and Pax6 were positively stained in adherent 3D spheroids but weakly or negatively stained in adherent 2D cells. Furthermore, OCT4, NANOG, SOX2, KLF4, HNK1, ABCG2 and PAX6 gene expression was significantly higher in adherent 3D spheroids than in adherent 2D cells. Meanwhile, SOX2, ABCG2 and PAX6 were more upregulated in adherent 3D spheroids than in suspended 3D spheroids. The RNA-seq analysis suggested that regulation of the actin cytoskeleton, TGFß/BMP and HIF-1 signaling pathways induced changes in mechanotransduction, the mesenchymal-to-epithelial transition and hypoxia, which might be responsible for the effect of PDMS on facilitating reprogramming. In conclusion, compared to corneal fibroblasts, keratocytes were more susceptible to reprogramming due to higher levels of endogenous stemness transcription factors. Spheroid culture of keratocytes using PDMS had a positive impact on promoting the expression of some stem cell markers. PDMS, as a substrate to form spheroids, was better able to promote reprogramming than ULAPs. These results indicated that the physiological cells and culture conditions herein enhance reprogramming. Therefore, adherent spheroid culture of keratocytes using PDMS is a promising strategy to more safely promote reprogramming, suggesting its potential application for developing clinical implants in tissue engineering and regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...