Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 101(5): 1113-1137, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34918470

RESUMEN

Long non-coding RNAs (lncRNAs) have received particular attention in the last decade due to its engaging in carcinogenesis and tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA that plays physiological and pathological roles in many aspects of genome function as well as biological processes involved in cell development, differentiation, proliferation, invasion, and migration. In this article, we will review the effects of lncRNA MALAT1 on the progression of six prevalent human cancers by focusing on MALAT1 ability to regulate post-transcriptional modification and signaling pathways.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular , Neoplasias/genética
2.
Biochimie ; 202: 71-84, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116742

RESUMEN

Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.


Asunto(s)
Melatonina , Neoplasias , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/fisiología , Microambiente Tumoral , Células Endoteliales , Neoplasias/tratamiento farmacológico , Resistencia a Múltiples Medicamentos
3.
Biochimie ; 202: 34-48, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35752221

RESUMEN

Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.


Asunto(s)
Melatonina , Neoplasias , Humanos , Melatonina/farmacología , Melatonina/metabolismo , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Autofagia , Ciclo Celular
4.
Cancer Cell Int ; 22(1): 176, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501851

RESUMEN

Malignant mesothelioma (MMe) is an aggressive neoplasm that occurs through the transformation of mesothelial cells. Asbestos exposure is the main risk factor for MMe carcinogenesis. Other important etiologies for MMe development include DNA damage, over-activation of survival signaling pathways, and failure of DNA damage response (DDR). In this review article, first, we will describe the most important signaling pathways that contribute to MMe development and their interaction with DDR. Then, the contribution of DDR failure in MMe progression will be discussed. Finally, we will review the latest MMe therapeutic strategies that target the DDR pathway.

5.
Biochimie ; 200: 44-59, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35618158

RESUMEN

Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.

6.
Drug Res (Stuttg) ; 72(4): 220-225, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35385883

RESUMEN

BACKGROUND: Osteosarcoma (OS) as the most frequent primary bone malignancy in children and adolescents has a short survival rate in advanced stages. Alternative herbal medicines with fewer side effects or the potency to protect common therapy's side effects can be helpful in combinational therapies. Herein, we aim to explore the effects of Thymoquinone (TQ) combined with Methotrexate (MTX) on Saos-2 cells apoptosis. METHODS: The effects of TQ and MTX alone or in combination on Saos-2 cell viability were measured by MTT assay. Real-time PCR was applied for the measurement of Bax, BCL-2, and caspase-9 mRNA expression. Apoptosis evaluation was conducted by flow cytometry. RESULTS: TQ improves the cytotoxic effects of MTX on Saos-2 cells proliferation at lower doses. Indeed, the IC50 of MTX decreased from 26 µM to 15 µM when it combined with TQ. TQ and MTX can induce the expression level of pro-apoptotic factors, Bax and caspase-9 while inhibiting anti-apoptotic protein BCL-2. Moreover, the combination of TQ and MTX potentiates apoptosis to 73%, compared to either TQ (48%) or MTX (53%) treated cells. CONCLUSION: The co-treatment of TQ and MTX is associated with the up-regulation of apoptotic factors and down-regulation of anti-apoptotic factors, conducting apoptosis aggravation and OS cell death.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Apoptosis , Benzoquinonas/farmacología , Benzoquinonas/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Caspasa 9/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
7.
Cancer Cell Int ; 22(1): 146, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410210

RESUMEN

Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.

8.
Biochimie ; 202: 26-33, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35341930

RESUMEN

Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.


Asunto(s)
Neoplasias de la Mama , Melatonina , Humanos , Femenino , Melatonina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Antioxidantes/uso terapéutico
9.
J Cell Physiol ; 237(1): 313-328, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515349

RESUMEN

The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
10.
Andrologia ; 53(9): e14174, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34231241

RESUMEN

Growing evidence indicating the critical modulator roles of microRNAs (miRNAs) involved in prostate cancer (PCa) metastasis that holds great promise as therapeutic targets. Herein, we transfected the miR-622 mimic into PC3 cells and evaluated the effects of this interference on these tumour cells' growth and the expression of specific metastatic genes. Transfecting of miR-622 mimic and inhibitor, negative control (NC) inhibitor and NC was established using Lipofectamine 2000. The mRNA levels of miR-622 and metastatic genes were evaluated using the qRT-PCR and Western blot. Cytotoxic effects of miR-622 were assessed by MTT. Apoptosis was detected using an ELISA cell death assay kit. miR-622 is down-regulated in PC3 cells. As expected, cell viability effects after transfection were described as miR-622 inhibitor >NC and NC inhibitor >miR-622 mimic (p < .01). Importantly, we showed that transfected miR-622 mimic could enhance the apoptosis of PC3 cells, while transfected miR-622 inhibitor could decrease cell apoptosis (p < .01). Furthermore, miR-622 overexpression could increase significantly down-regulated the MMP2, MMP9, CXCR-4, c-Myc and K-Ras expression levels. Findings demonstrate a novel mechanism by which miR-622 modulates PCa cells' metastasis by targeting metastatic genes. These data confirm the tumour-suppressive function of miR-622 in PCa cells by enhancing apoptosis and reducing metastasis.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética
11.
Biomol Concepts ; 12(1): 8-15, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33878249

RESUMEN

Doxorubicin (DOX) is an effective chemotherapeutic agent used for the treatment of various types of cancer. However, its poor solubility, undesirable side effects, and short half-life have remained a challenge. We used a formulation based on graphene oxide as an anticancer drug delivery system for DOX in MCF-7 breast cancer cells, to address these issues. In vitro release studies confirmed that the synthesized formulation has an improved release profile in acidic conditions (similar to the tumor microenvironment). Further in vitro studies, including MTT, uptake, and apoptosis assays were performed. The toxic effects of the nanocarrier on the kidney, heart and liver of healthy rats were also evaluated. We observed that the DOX-loaded carrier improved the cytotoxic effect of DOX on the breast cell line compared to free DOX. In summary, our results introduce the DOX-loaded carrier as a potential platform for in vitro targeting of cancer cells and suggest further studies are necessary to investigate its in vivo anti-cancer potential.


Asunto(s)
Neoplasias de la Mama/patología , Ciclodextrinas/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Grafito/química , Nanopartículas/administración & dosificación , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Doxorrubicina/química , Doxorrubicina/farmacocinética , Femenino , Humanos , Células MCF-7 , Nanopartículas/química , Ratas , Ratas Wistar
12.
Life Sci ; 259: 118387, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32890603

RESUMEN

Telomerase is a nucleoprotein reverse transcriptase that maintains the telomere, a protective structure at the ends of the chromosome, and is active in cancer cells, stem cells, and fetal cells. Telomerase immortalizes cancer cells and induces unlimited cell division by preventing telomere shortening. Immortalized cancer cells have unlimited proliferative potential due to telomerase activity that causes tumorigenesis and malignancy. Therefore, telomerase can be a lucrative anti-cancer target. The regulation of catalytic subunit of telomerase (TERT) determines the extent of telomerase activity. miRNAs, as an endogenous regulator of gene expression, can control telomerase activity by targeting TERT mRNA. miRNAs that have a decreasing effect on TERT translation mediate modulation of telomerase activity in cancer cells by binding to TERT mRNA and regulating TERT translation. In this review, we provide an update on miRNAs that influence telomerase activity by regulation of TERT translation.


Asunto(s)
MicroARNs/metabolismo , Neoplasias/enzimología , Telomerasa/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo
13.
Life Sci ; 259: 118165, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735884

RESUMEN

CRISPR (clustered regularly interspaced short palindromic Repeats)/Cas9 is a new genetic editing technology that can be a beneficial method to advance gene therapy. CRISPR technology is a defense system of some bacteria against invading viruses. Genome editing based on the CRISPR/Cas9 system is an efficient and potential technology that can be a viable alternative to traditional methods. This system is a compound of a short guide RNAs (gRNAs) for identifying the target DNA sequence and Cas9 protein as nuclease for breaking and cutting of DNA. In this review, recent advances in the CRISPR/Cas9-mediated genome editing tools are presented as well as their use in gene therapy strategies for the treatment of neurological disorders including Parkinson's disease, Alzheimer's disease, and Huntington's disease.


Asunto(s)
Sistemas CRISPR-Cas , Terapia Genética/métodos , Enfermedades Neurodegenerativas/terapia , Animales , Humanos
14.
J Cell Physiol ; 235(6): 5059-5071, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31951025

RESUMEN

Breast cancer is a major clinical challenge that affects a wide range of the female population and heavily burdens the health system. In the past few decades, attempts have been made to understand the etiology of breast cancer, possible environmental risk factors, and the genetic predispositions, pathogenesis, and molecular aberrations involved in the process. Studies have shown that breast cancer is a heterogeneous entity; each subtype has its specific set of aberrations in different cell signaling pathways, such as Notch, Wnt/ß-catenin, transforming growth factor-ß, and mitogen-activated protein kinase pathways. One novel group of molecules that have been shown to be inducted in the regulation of multiple cell signaling pathways is the long noncoding RNAs (lncRNAs). These molecules have important implications in the regulation of multiple signaling pathways by interacting with various genes, affecting the transcription process, and finally, playing roles in posttranslational control of these genes. There is growing evidence that lncRNAs are involved in the process of breast cancer formation by effecting the aforementioned signaling pathways, and that this involvement can have significant diagnostic and prognostic values in clinical contexts. The present review aims to elicit the significance of lncRNAs in the regulation of cell signaling pathways, and the resulting changes in cell survival, proliferation, and invasion, which are the hallmarks of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/genética , ARN Largo no Codificante/genética , Neoplasias de la Mama/patología , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico
15.
J Cell Physiol ; 235(6): 5008-5029, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31724738

RESUMEN

Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , MicroARNs/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , FN-kappa B/genética , Fosfatidilinositol 3-Quinasa/genética , Receptores Notch/genética , Transducción de Señal/genética , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...