Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Microb Cell ; 9(1): 1-20, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35083313

RESUMEN

The early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is required to identify and isolate contagious patients to prevent further transmission of SARS-CoV-2. In this study, we present a multitarget real-time TaqMan reverse transcription PCR (rRT-PCR) assay for the quantitative detection of SARS-CoV-2 and some of its circulating variants harboring mutations that give the virus a selective advantage. Seven different primer-probe sets that included probes containing locked nucleic acid (LNA) nucleotides were designed to amplify specific wild-type and mutant sequences in Orf1ab, Envelope (E), Spike (S), and Nucleocapsid (N) genes. Furthermore, a newly developed primer-probe set targeted human ß2-microglobulin (B2M) as a highly sensitive internal control for RT efficacy. All singleplex and fourplex assays detected ≤ 14 copies/reaction of quantified synthetic RNA transcripts, with a linear amplification range of nine logarithmic orders. Primer-probe sets for detection of SARS-CoV-2 exhibited no false-positive amplifications with other common respiratory pathogens, including human coronaviruses NL63, 229E, OC43, and HKU-1. Fourplex assays were evaluated using 160 clinical samples positive for SARS-CoV-2. Results showed that SARS-CoV-2 viral RNA was detected in all samples, including viral strains harboring mutations in the Spike coding sequence that became dominant in the pandemic. Given the emergence of SARS-CoV-2 variants and their rapid spread in some populations, fourplex rRT-PCR assay containing four primer-probe sets represents a reliable approach to allow quicker detection of circulating relevant variants in a single reaction.

2.
Nat Commun ; 12(1): 979, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579912

RESUMEN

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Epigenómica , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Proteína-Arginina N-Metiltransferasas/efectos de los fármacos , Proteína-Arginina N-Metiltransferasas/genética , Empalme del ARN , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Assoc Med Microbiol Infect Dis Can ; 5(4): 235-238, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36340052

RESUMEN

Background: The first documented case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Quebec was confirmed on February 27, 2020. Retracing the first cases that occur within a geographical region may provide insight regarding the evolution and spread of SARS-CoV-2 in that region because the spread of undiagnosed cases may facilitate the initial community amplification of the virus. Methods: We performed a retrospective analysis of respiratory tract samples collected for influenza testing in a region of Quebec, Canada, to look for evidence of early circulation of SARS-CoV-2. Frozen nucleic acid extracts initially collected for influenza testing between January 1 and February 20, 2020, were tested for SARS-CoV-2 using a reverse transcription-polymerase chain reaction assay. Results: During the study period, 1,440 of 2,121 (67.9%) nucleic acid extracts from individual patients were available for retrospective testing. None of the samples tested positive for SARS-CoV-2. Conclusions: The results suggest that SARS-CoV-2 was not circulating within the region before February 20, 2020, because many samples, representing more than two-thirds of all samples tested for influenza during early 2020, were tested. Further studies using a similar methodology to determine the date of onset of SARS-CoV-2 in different countries and geographic areas could enhance our understanding of the current pandemic.


Historique: Le premier cas démontré d'infection par le syndrome respiratoire aigu sévère à coronavirus 2 (SARS-CoV-2) au Québec a été confirmé le 27 février 2020. Le retraçage du premier cas survenu dans une région géographique peut donner un aperçu de l'évolution et de la propagation du virus SARS-CoV-2 dans cette région, car la transmission des cas non diagnostiqués peut favoriser l'amplification initiale du virus dans la communauté. Méthodologie: Les chercheurs ont procédé à l'analyse rétrospective des échantillons respiratoires prélevés pour le dépistage de la grippe dans une région du Québec, au Canada, afin de trouver des preuves de circulation précoce du virus SARS-CoV-2D. Les extraits d'acide nucléique congelés entre le 1er janvier et le 20 février 2020 ont été soumis au dépistage du virus SARS-CoV-2 au moyen de l'amplification en chaîne par polymérase après transcriptase inverse. Résultats: Pendant la période de l'étude, 1 440 des 2 121 extraits d'acide nucléique (67,9 %) provenant de patients différents étaient disponibles en vue de tests rétrospectifs. Aucun n'a été positif au virus SARS-CoV-2. Conclusions: D'après les résultats, le virus SARS-CoV-2 n'était pas en circulation dans la région avant le 20 février 2020, car de nombreux échantillons, représentant plus des deux tiers de tous ceux ayant servi au dépistage de la grippe au début de l'année 2020, ont été soumis au dépistage. D'autres études faisant appel à une méthodologie semblable pour déterminer la date d'apparition du virus SARS-CoV-2 dans divers pays et diverses régions géographiques pourraient permettre de mieux comprendre la pandémie en cours.

4.
Genes Cancer ; 10(3-4): 97-108, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31258835

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths around the world. Recent advances in genomic technologies have allowed the identification of various molecular signatures in HCC tissues. For instance, differential gene expression levels of various cytochrome P450 genes (CYP450) have been reported in studies performed on limited numbers of HCC tissue samples, or focused on a small subset on CYP450s. In the present study, we monitored the expression landscape of all the members of the CYP450 family (57 genes) in more than 200 HCC tissues using RNA-Seq data from The Cancer Genome Atlas. Using stringent statistical filters and data from paired tissues, we identified significantly dysregulated CYP450 genes in HCC. Moreover, the expression level of selected CYP450s was validated by qPCR on cDNA samples from an independent cohort. Threshold values (sensitivity and specificity) based on dysregulated gene expression were also determined to allow for confident identification of HCC tissues. Finally, a global look at expression levels of the 57 members of the CYP450 family across ten different cancer types revealed specific expression signatures. Overall, this study provides useful information on the transcriptomic landscape of CYP450 genes in HCC and on new potential HCC biomarkers.

5.
BMC Cancer ; 18(1): 355, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29606096

RESUMEN

BACKGROUND: Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined. METHODS: PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003. RESULTS: In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by > 25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b. CONCLUSIONS: Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt through alternative splicing of key cancer-associated genes. We suggest that the CLK splice factor kinases could be targeted in cancers in which hypoxia contributes to resistance to therapy.


Asunto(s)
Empalme Alternativo , Hipoxia/genética , Hipoxia/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Familia de Multigenes , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
Sci Rep ; 8(1): 2206, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396485

RESUMEN

Little is known about how RNA binding proteins cooperate to control splicing, and how stress pathways reconfigure these assemblies to alter splice site selection. We have shown previously that SRSF10 plays an important role in the Bcl-x splicing response to DNA damage elicited by oxaliplatin in 293 cells. Here, RNA affinity assays using a portion of the Bcl-x transcript required for this response led to the recovery of the SRSF10-interacting protein 14-3-3ε and the Sam68-interacting protein hnRNP A1. Although SRSF10, 14-3-3ε, hnRNP A1/A2 and Sam68 do not make major contributions to the regulation of Bcl-x splicing under normal growth conditions, upon DNA damage they become important to activate the 5' splice site of pro-apoptotic Bcl-xS. Our results indicate that DNA damage reconfigures the binding and activity of several regulatory RNA binding proteins on the Bcl-x pre-mRNA. Moreover, SRSF10, hnRNP A1/A2 and Sam68 collaborate to drive the DNA damage-induced splicing response of several transcripts that produce components implicated in apoptosis, cell-cycle control and DNA repair. Our study reveals how the circuitry of splicing factors is rewired to produce partnerships that coordinate alternative splicing across processes crucial for cell fate.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Oxaliplatino/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Proteínas 14-3-3/metabolismo , Reparación del ADN , Células HEK293 , Humanos , Mutágenos/metabolismo , Precursores del ARN/metabolismo , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
7.
Oncotarget ; 8(56): 95981-95998, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29221181

RESUMEN

HTLV-1 is estimated to affect ~20 million people worldwide and in ~5% of carriers it produces Adult T-Cell Leukemia/Lymphoma (ATLL), which can often masquerade and present with classic erythematous pruritic patches and plaques that are typically seen in Mycosis Fungoides (MF) and Sézary Syndrome (SS), the most recognized variants of Cutaneous T-Cell Lymphomas (CTCL). For many years the role of HTLV-1 in the pathogenesis of MF/SS has been hotly debated. In this study we analyzed CTCL vs. HTLV-1+ leukemic cells. We performed G-banding/spectral karyotyping, extensive gene expression analysis, TP53 sequencing in the 11 patient-derived HTLV-1+ (MJ and Hut102) vs. HTLV-1- (Myla, Mac2a, PB2B, HH, H9, Hut78, SZ4, Sez4 and SeAx) CTCL cell lines. We further tested drug sensitivities to commonly used CTCL therapies and studied the ability of these cells to produce subcutaneous xenograft tumors in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Our work demonstrates that unlike classic advanced MF/SS cells that acquire many ongoing balanced and unbalanced chromosomal translocations, HTLV-1+ CTCL leukemia cells are diploid and exhibit only a minimal number of non-specific chromosomal alterations. Our results indicate that HTLV-1 virus is likely not involved in the pathogenesis of classic MF/SS since it drives a very different pathway of lymphomagenesis based on our findings in these cells. This study also provides for the first time a comprehensive characterization of the CTCL cells with respect to gene expression profiling, TP53 mutation status, ability to produce tumors in mice and response to commonly used therapies.

8.
BMC Mol Biol ; 18(1): 19, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28728573

RESUMEN

BACKGROUND: RBM10 is an RNA binding protein involved in message stabilization and alternative splicing regulation. The objective of the research described herein was to identify novel targets of RBM10-regulated splicing. To accomplish this, we downregulated RBM10 in human cell lines, using small interfering RNAs, then monitored alternative splicing, using a reverse transcription-PCR screening platform. RESULTS: RBM10 knockdown (KD) provoked alterations in splicing events in 10-20% of the pre-mRNAs, most of which had not been previously identified as RBM10 targets. Hierarchical clustering of the genes affected by RBM10 KD revealed good conservation of alternative exon inclusion or exclusion across cell lines. Pathway annotation showed RAS signaling to be most affected by RBM10 KD. Of particular interest was the finding that splicing of SMN pre-mRNA, encoding the survival of motor neuron (SMN) protein, was influenced by RBM10 KD. Inhibition of RBM10 resulted in preferential expression of the full-length, exon 7 retaining, SMN transcript in four cancer cell lines and one normal skin fibroblast cell line. SMN protein is expressed from two genes, SMN1 and SMN2, but the SMN1 gene is homozygously disrupted in people with spinal muscular atrophy; as a consequence, all of the SMN that is expressed in people with this disease is from the SMN2 gene. Expression analyses using primary fibroblasts from control, carrier and spinal muscle atrophy donors demonstrated that RBM10 KD resulted in preferential expression of the full-length, exon 7 retaining, SMN2 transcript. At the protein level, upregulation of the full-length SMN2 was also observed. Re-expression of RBM10, in a stable RBM10 KD cancer cell line, correlated with a reversion of the KD effect, demonstrating specificity. CONCLUSION: Our work has not only expanded the number of pre-mRNA targets for RBM10, but identified RBM10 as a novel regulator of SMN2 alternative inclusion.


Asunto(s)
Precursores del ARN/genética , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Línea Celular , Análisis por Conglomerados , Biología Computacional/métodos , Exones , Fibroblastos , Perfilación de la Expresión Génica , Humanos , Reproducibilidad de los Resultados , Transducción de Señal , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteínas ras/metabolismo
9.
Oncoimmunology ; 6(5): e1306618, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638728

RESUMEN

Cutaneous T-Cell Lymphomas (CTCL) are rare, but potentially devastating malignancies, whose pathogenesis remains poorly elucidated. Unfortunately, currently it is not possible to predict based on the available criteria in which patients the cancer will progress and which patients will experience an indolent disease course. Furthermore, at early stages this malignancy often masquerades as psoriasis, chronic eczema or other benign inflammatory dermatoses. As a result, it takes on average 6 y to diagnose this lymphoma since its initial presentation. In this study, we performed transcription expression profiling using TruSeq targeted RNA gene expression on 181 fresh and formalin-fixed and paraffin-embedded (FFPE) skin samples from CTCL patients and patients affected by benign inflammatory dermatoses that often mimic CTCL clinically and on histology (e.g., psoriasis, chronic eczema, etc.) We also analyzed multiple longitudinal biopsies that were obtained from the same patients over time. Our results underscore significant molecular heterogeneity with respect to gene expression between different patients and even within the same patients over time. Our study also confirmed TOX, FYB, LEF1, CCR4, ITK, EED, POU2AF, IL26, STAT5, BLK, GTSF1 and PSORS1C2 genes as being differentially expressed between CTCL and benign skin biopsies. In addition, we found that differential expression for a subset of these markers (e.g., TOX, FYB, GTSF1 and CCR4) may be useful in prognosticating this disease. This research, combined with other molecular analyses, prepares the foundation for the development of personalized molecular approach toward diagnosis and management of CTCL.

10.
PLoS One ; 12(5): e0176880, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493890

RESUMEN

Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein-Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.


Asunto(s)
Empalme Alternativo/genética , Infecciones por Virus de Epstein-Barr/genética , Perfilación de la Expresión Génica , Herpesvirus Humano 4/fisiología , ARN Neoplásico/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/virología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Unión Proteica , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Neoplasias Gástricas/patología , Análisis de Supervivencia
11.
PLoS One ; 11(9): e0161914, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27598998

RESUMEN

Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.


Asunto(s)
Empalme Alternativo , Fibroblastos/metabolismo , Genoma , Interacciones Huésped-Patógeno/genética , Orthoreovirus Mamífero 3/crecimiento & desarrollo , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Exones , Fibroblastos/virología , Ontología de Genes , Humanos , Orthoreovirus Mamífero 3/patogenicidad , Ratones , Anotación de Secuencia Molecular , Proteómica , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
12.
BMC Genomics ; 17: 683, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27565572

RESUMEN

BACKGROUND: Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. RESULTS: Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. CONCLUSIONS: This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC.


Asunto(s)
Empalme Alternativo , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Hepatitis B/complicaciones , Hepatitis C/complicaciones , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/virología , Factores de Empalme de ARN/genética , ARN Mensajero , Reproducibilidad de los Resultados , Transactivadores/genética , Transactivadores/metabolismo , Transcriptoma , Proteínas Reguladoras y Accesorias Virales
13.
Sci Rep ; 5: 14301, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26391193

RESUMEN

The SOCS1 (Suppressor Of Cytokine Signalling 1) protein is considered a tumour suppressor. Notably, the SOCS1 gene is frequently silenced in cancer by hypermethylation of its promoter. Besides blocking inflammation, SOCS1 tumour suppressor activity involves Met receptor inhibition and enhancement of p53 tumour suppressor activity. However, the role of SOCS1 in colorectal cancer (CRC) remains understudied and controversial. Here, we investigated SOCS1 relevance for CRC by querying gene expression datasets of human CRC specimens from The Cancer Genome Atlas (TCGA), and by SOCS1 gain/loss-of-function analyses in murine and human colon carcinoma cells. Our results show that SOCS1 mRNA levels in tumours were more often elevated than reduced with respect to matched adjacent normal tissue of CRC specimens (n = 41). The analysis of TCGA dataset of 431 CRC patients revealed no correlation between SOCS1 expression and overall survival. Overexpression of SOCS1 in CRC cells triggered cell growth enhancement, anchorage-independent growth and resistance to death stimuli, whereas knockdown of SOCS1 reduced these oncogenic features. Moreover, SOCS1 overexpression in mouse CT26 cells increased tumourigenesis in vivo. Biochemical analyses showed that SOCS1 pro-oncogenic activity correlated with the down-modulation of STAT1 expression. Collectively, these results suggest that SOCS1 may work as an oncogene in CRC.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas Supresoras de la Señalización de Citocinas/genética , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Interferón gamma/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
14.
PLoS One ; 10(5): e0125998, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993117

RESUMEN

Alternative splicing patterns are known to vary between tissues but these patterns have been found to be predominantly peculiar to one species or another, implying only a limited function in fundamental neural biology. Here we used high-throughput RT-PCR to monitor the expression pattern of all the annotated simple alternative splicing events (ASEs) in the Reference Sequence Database, in different mouse tissues and identified 93 brain-specific events that shift from one isoform to another (switch-like) between brain and other tissues. Consistent with an important function, regulation of a core set of 9 conserved switch-like ASEs is highly conserved, as they have the same pattern of tissue-specific splicing in all vertebrates tested: human, mouse and zebrafish. Several of these ASEs are embedded within genes that encode proteins associated with the neuronal microtubule network, and show a dramatic and concerted shift within a short time window of human neural stem cell differentiation. Similarly these exons are dynamically regulated in zebrafish development. These data demonstrate that although alternative splicing patterns often vary between species, there is nonetheless a core set of vertebrate brain-specific ASEs that are conserved between species and associated with neural differentiation.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Neuronas/citología , Vertebrados/metabolismo , Animales , Humanos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra
15.
PLoS One ; 9(9): e107324, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25211016

RESUMEN

With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1. Second, using cell cultures from human embryonic muscle, we noted that DM1-associated splicing alterations were significantly enriched in cytoskeleton (e.g. SORBS1, TACC2, TTN, ACTN1 and DMD) and channel (e.g. KCND3 and TRPM4) genes. Third, of the splicing alterations occurring in adult DM1 tissues, one produced a dominant negative variant of the splicing regulator RBFOX1. Notably, half of the splicing events controlled by MBNL1 were co-regulated by RBFOX1, and several events in this category were mis-spliced in DM1 tissues. Our results suggest that reduced RBFOX1 activity in DM1 tissues may amplify several of the splicing alterations caused by the deficiency in MBNL1.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Miotónica/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Adulto , Empalme Alternativo , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Mioblastos/metabolismo , Distrofia Miotónica/genética , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo
16.
RNA ; 20(2): 189-201, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335142

RESUMEN

Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.


Asunto(s)
Empalme Alternativo , Neoplasias Ováricas/metabolismo , ARN Mensajero/genética , Línea Celular Tumoral , Células Epiteliales/metabolismo , Femenino , Expresión Génica , Humanos , Captura por Microdisección con Láser , Especificidad de Órganos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN , Factores de Empalme de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Represoras/fisiología , Células del Estroma/metabolismo , Microambiente Tumoral
17.
Nucleic Acids Res ; 42(6): e40, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24375754

RESUMEN

Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a non-hybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 5' splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants.


Asunto(s)
Empalme Alternativo , Oligonucleótidos/química , Algoritmos , Línea Celular , Proteínas de Unión al ADN/metabolismo , Exones , Células HeLa , Humanos , Oligonucleótidos Antisentido/química , Sitios de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
18.
Nat Commun ; 4: 2480, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24048253

RESUMEN

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has provided huge insight into the pathways, mechanisms and transcription factors that control differentiation. Here we use high-throughput RT-PCR technology to take a snapshot of splicing changes in the full spectrum of high- and low-expressed genes during induction of fibroblasts, from several donors, into iPSCs and their subsequent redifferentiation. We uncover a programme of concerted alternative splicing changes involved in late mesoderm differentiation and controlled by key splicing regulators MBNL1 and RBFOX2. These critical splicing adjustments arise early in vertebrate evolution and remain fixed in at least 10 genes (including PLOD2, CLSTN1, ATP2A1, PALM, ITGA6, KIF13A, FMNL3, PPIP5K1, MARK2 and FNIP1), implying that vertebrates require alternative splicing to fully implement the instructions of transcriptional control networks.


Asunto(s)
Empalme Alternativo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Diferenciación Celular , Células Cultivadas , Reprogramación Celular/genética , Fibroblastos/citología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Madre Pluripotentes Inducidas/citología , Recién Nacido , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Unión Proteica , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal
19.
Mol Cell Biol ; 33(2): 396-405, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23149937

RESUMEN

Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Línea Celular Tumoral , Biología Computacional , Células Epiteliales/citología , Células Epiteliales/metabolismo , Exones , Feto/citología , Feto/metabolismo , Perfilación de la Expresión Génica , Células HeLa , Humanos , Células Madre Mesenquimatosas/citología , Interferencia de ARN , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Mol Cell Biol ; 32(5): 954-67, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22203037

RESUMEN

Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-x(S) splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.


Asunto(s)
Empalme Alternativo , Apoptosis/genética , Exones , Proteína bcl-X/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/genética , Proteínas Co-Represoras , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Interferencia de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Empalmosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...