Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Adv ; 10(2): eadl0604, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198553

RESUMEN

Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.

2.
Nanotechnology ; 35(6)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37918028

RESUMEN

Aberration-corrected electron-beam lithography (AC-EBL) using ultra-thin electron transparent membranes has achieved single-digit nanometer resolution in two widely used electron-beam resists: poly (methyl methacrylate) (PMMA) and hydrogen silsesquioxane. On the other hand, AC-EBL implementation on thick, electron-opaque substrates is appealing for conventional top-down fabrication of quantum devices with nanometer-scale features. To investigate the performance of AC-EBL on thick substrates, we measured the lithographic point spread function of a 200 keV aberration-corrected scanning transmission electron microscope by defining both positive and negative patterns in PMMA thin films, spin-cast on thick SiO2/Si substrates. We present the problems encountered during pre-exposure beam focusing and discuss methods to overcome them. In addition, applying some of these methods using commercial 50 nm thick SiNXmembranes with thick Si support frames, we printed arrays of holes in PMMA with pitches around 26 nm on SiNX/Si substrates with increasing Si thickness. Our results show that proximity effects from even 50 nm thick SiNXmembranes limit hole arrays to 20 nm pitch; however, down to this limit, the effect of the substrate thickness on the pattern quality is minimal. These results highlight the need for novel resists less susceptible to proximity effects, or resists which can be used directly, after development, as the dielectric material in periodic gates in 2D quantum devices.

3.
Soft Matter ; 19(14): 2594-2604, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947412

RESUMEN

Blends of block copolymers can form phases and exhibit features distinct from the constituent materials. We study thin film blends of cylinder-forming and lamellar-forming block copolymers across a range of substrate surface energies. Blend materials are responsive to interfacial energy, allowing selection of pure or coexisting phases based on surface chemistry. Blending stabilizes certain motifs that are typically metastable, and can be used to generate pure hexagonally perforated lamellar thin films across a range of film thicknesses and surface energies. This tolerant behavior is ascribed to the ability of blend materials to redistribute chains to stabilize otherwise high-energy defect structures. The blend responsiveness allows the morphology to be spatially defined through multi-tone chemical surface patterns.

4.
Nat Mater ; 22(2): 216-224, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36702888

RESUMEN

Investigation of the inherent field-driven charge transport behaviour of three-dimensional lead halide perovskites has largely remained challenging, owing to undesirable ionic migration effects near room temperature and dipolar disorder instabilities prevalent specifically in methylammonium-and-lead-based high-performing three-dimensional perovskite compositions. Here, we address both these challenges and demonstrate that field-effect transistors based on methylammonium-free, mixed metal (Pb/Sn) perovskite compositions do not suffer from ion migration effects as notably as their pure-Pb counterparts and reliably exhibit hysteresis-free p-type transport with a mobility reaching 5.4 cm2 V-1 s-1. The reduced ion migration is visualized through photoluminescence microscopy under bias and is manifested as an activated temperature dependence of the field-effect mobility with a low activation energy (~48 meV) consistent with the presence of the shallow defects present in these materials. An understanding of the long-range electronic charge transport in these inherently doped mixed metal halide perovskites will contribute immensely towards high-performance optoelectronic devices.

5.
Nat Commun ; 13(1): 6947, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376380

RESUMEN

Block copolymers spontaneously self-assemble into well-defined nanoscale morphologies. Yet equilibrium assembly gives rise to a limited set of structures. Non-equilibrium strategies can, in principle, expand diversity by exploiting self-assembly's responsive nature. In this vein, we developed a pathway priming strategy combining control of thin film initial configurations and ordering history. We sequentially coat distinct materials to form prescribed initial states, and use thermal annealing to evolve these manifestly non-equilibrium states through the assembly landscape, traversing normally inaccessible transient structures. We explore the enormous associated hyperspace, spanning processing (annealing temperature and time), material (composition and molecular weight), and layering (thickness and order) dimensions. We demonstrate a library of exotic non-native morphologies, including vertically-oriented perforated lamellae, aqueduct structures (vertical lamellar walls with substrate-pinned perforations), parapets (crenellated lamellae), and networks of crisscrossing lamellae. This enhanced structural control can be used to modify functional properties, including accessing regimes that surpass their equilibrium analogs.


Asunto(s)
Polímeros , Polímeros/química
6.
Phys Rev Lett ; 127(8): 086805, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477425

RESUMEN

We present experimental evidence of electronic and optical interlayer resonances in graphene van der Waals heterostructure interfaces. Using the spectroscopic mode of a low-energy electron microscope (LEEM), we characterized these interlayer resonant states up to 10 eV above the vacuum level. Compared with nontwisted, AB-stacked bilayer graphene (AB BLG), an ≈0.2 Å increase was found in the interlayer spacing of 30° twisted bilayer graphene (30°-tBLG). In addition, we used Raman spectroscopy to probe the inelastic light-matter interactions. A unique type of Fano resonance was found around the D and G modes of the graphene lattice vibrations. This anomalous, robust Fano resonance is a direct result of quantum confinement and the interplay between discrete phonon states and the excitonic continuum.

7.
ACS Appl Mater Interfaces ; 12(1): 1444-1453, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31786911

RESUMEN

Organic-inorganic hybrids featuring tunable material properties can be readily generated by applying vapor- or liquid-phase infiltration (VPI or LPI) of inorganic materials into organic templates, with resulting properties controlled by type and quantity of infiltrated inorganics. While LPI offers more diverse choices of infiltratable elements, it tends to yield smaller infiltration amount than VPI, but the attempt to address the issue has been rarely reported. Here, we demonstrate a facile temperature-enhanced LPI method to control and drastically increase the quantity and kinetics of Pt infiltration into self-assembled polystyrene-block-poly(2-vinylpyridine) block copolymer (BCP) thin films. By applying LPI at mildly elevated temperatures (40-80 °C), we showcase controllable optical functionality of hybrid BCP films along with conductive three-dimensional (3D) inorganic nanostructures. Structural analysis reveals enhanced metal loading into the BCP matrix at higher LPI temperatures, suggesting multiple metal ion infiltration per monomer of P2VP. Combining temperature-enhanced LPI with hierarchical multilayer BCP self-assembly, we generate BCP-metal hybrid optical coatings featuring tunable antireflective properties as well as scalable conductive 3D Pt nanomesh structures. Enhanced material infiltration and control by temperature-enhanced LPI not only enables tunability of organic-inorganic hybrid nanostructures and properties but also expands the application of BCPs for generating uniquely functional inorganic nanostructures.

8.
ACS Appl Mater Interfaces ; 10(50): 43817-43823, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30475575

RESUMEN

This Research Article discusses the growth of polycrystalline, self-supporting ZnO nanofibers, which can detect nitrogen dioxide (NO2) gas down to 1 part per billion (ppb), one of the smallest detection limits reported for NO2 using ZnO. A new and innovative method has been developed for growing polycrystalline ZnO nanofibers. These nanofibers have been created using core-shell electrospinning of inorganic metal precursor zinc neodecanoate, where growth occurs at the core of the nanofibers. This process produces contamination-free, self-supporting, polycrystalline ZnO nanofibers of an average diameter and grain size 50 and 8 nm, respectively, which are ideal for gas sensing applications. This process opens up an exciting opportunity for creating nanofibers from a variety of metal oxides, facilitating many new applications especially in the areas of sensors and wearable technologies.

9.
Sci Rep ; 8(1): 13865, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206372

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

10.
Sci Rep ; 8(1): 6607, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700337

RESUMEN

Existing techniques for patterning metallic structures on elastomers are limited in terms of resolution, yield and scalability. The primary constraint is the incompatibility of their physical properties with conventional cleanroom techniques. We demonstrate a reliable fabrication strategy to transfer high resolution metallic structures of <500 nm in dimension on elastomers. The proposed method consists of producing a metallic pattern using conventional lithographic techniques on silicon coated with a thin sacrificial aluminium layer. Subsequent wet etching of the sacrificial layer releases the elastomer with the embedded metallic pattern. Using this method, a nano-resistor with minimum feature size of 400 nm is fabricated on polydimethylsiloxane (PDMS) and applied in gas sensing. Adsorption of solvents in the PDMS causes swelling and increases the device resistance, which therefore enables the detection of volatile organic compounds (VOCs). Sensitivity to chloroform and toluene vapor with a rapid response (~30 s) and recovery (~200 s) is demonstrated using this PDMS nano-resistor at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...