Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 29(41): 12754-61, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24015825

RESUMEN

Eumelanin is not only a ubiquitous pigment among living organisms with photoprotective and antioxidant functions, but is also the subject of intense interest in materials science due to its photoconductivity and as a possible universal coating platform, known as "polydopamine films". The structure of eumelanin remains largely elusive, relying either on a polymeric model or on a heterogeneous aggregate structure. The structure of eumelanin as well as that of the closely related "polydopamine films" can be modified by playing on the nature of the oxidant used to oxidize dopamine or related compounds. In this investigation, we show that dopamine-eumelanins produced from dopamine in the presence of either air (O2 being the oxidant) or Cu(2+) cations display drastically different optical and colloidal properties in relation with a different supramolecular assembly of the oligomers of 5,6 dihydroxyindole, the final oxidation product of dopamine. The possible origin of these differences is discussed on the basis of Cu(2+) incorporation in Cu dopamine-eumelanin.


Asunto(s)
Cobre/química , Dopamina/química , Melaninas/química , Oxidantes/química , Oxígeno/química , Cationes/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
2.
J Am Soc Mass Spectrom ; 24(7): 1123-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23715871

RESUMEN

Collision-induced dissociation of doubly charged poly(dimethylsiloxane) (PDMS) molecules was investigated to provide experimental evidence for fragmentation reactions proposed to occur upon activation of singly charged oligomers. This study focuses on two PDMS species holding trimethylsilyl or methoxy end-groups and cationized with ammonium. In both cases, introduction of the additional charge did not induce significant differences in dissociation behavior, and the use of doubly charged precursors enabled the occurrence of charge-separation reactions, allowing molecules always eliminated as neutrals upon activation of singly charged oligomers to be detected as cationized species. In the case of trimethylsilyl-terminated oligomers, random location of the adducted charge combined with rapid consecutive reactions proposed to occur from singly charged precursors could be validated based on MS/MS data of doubly charged oligomers. In the case of methoxy-terminated PDMS, favored interaction of the adducted ammonium with both end-groups, proposed to rationalize the dissociation behavior of singly charged molecules, was also supported by MS/MS data obtained for molecules adducted with two ammonium cations.

3.
ACS Nano ; 7(2): 1524-32, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23320483

RESUMEN

Eumelanin is a ubiquitous pigment in nature and has many intriguing physicochemical properties, such as broad-band and monotonous absorption spectrum, antioxidant and free radical scavenging behavior, and strong nonradiative relaxation of photoexcited electronic states. These properties are highly related to its structural and mechanical properties and make eumelanin a fascinating candidate for the design of multifunctional nanomaterials. Here we report joint experimental-computational investigation of the structural and mechanical properties of eumelanin assemblies produced from dopamine, revealing that the mass density of dry eumelanin is 1.55 g/cm³ and its Young's modulus is ≈5 GPa. We also find that wet eumelanin has a lower mass density and Young's modulus depending on the water-to-melanin ratio. Most importantly, our data show that eumelanin molecules tend to form secondary structures based on noncovalent π stacking in both dry and wet conditions, with an interlayer distance between eumelanin molecules of 3.3 Å. Corresponding transmission electron microscope images confirm the supramolecular organization predicted in our simulations. Our simulations show that eumelanin is an isotropic material at a larger scale when eumelanin molecules are randomly oriented to form secondary structures. These results are in good agreement with experimental observations, density functional theory calculations, and bridge the gap between earlier experimental and small-scale quantum mechanical studies of eumelanin. We use the knowledge acquired from the simulations to select a partner molecule, a cationic phthalocyanine, allowing us to produce layer-by-layer films containing eumelanin that display an electrical conductivity 5 orders of magnitudes higher than that of pure eumelanin films.


Asunto(s)
Diseño de Fármacos , Indoles/química , Melaninas/química , Fenómenos Físicos , Polímeros/química , Conductividad Eléctrica , Modelos Moleculares , Conformación Molecular
4.
Rapid Commun Mass Spectrom ; 27(1): 88-96, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23239320

RESUMEN

RATIONALE: When substituting one methyl moiety by a hydrogen atom in each end-group of a trimethylsilyl-terminated poly(dimethylsiloxane) (PDMS), dissociation reactions of oligomers adducted with ammonium were observed to proceed at a much higher rate, evidencing the high reactivity of hydride groups. Polymeric molecules containing methylhydrosiloxane (MHS) units could thus be expected to exhibit a different tandem mass spectrometric (MS/MS) behavior from PDMS. METHODS: Trimethylsilyl-terminated PMHS and trimethylsilyl-terminated poly(MHS)-co-(DMS) were electrosprayed in the gas phase either as ammonium adducts or lithium adducts. Product ions generated upon collision-induced dissociation (CID) were accurately mass measured in an orthogonal acceleration time-of-flight mass analyzer. RESULTS: In contrast to PDMS adducted with lithium, useful structural features could be obtained from product ions generated upon CID of lithium adducts of PMHS. The presence of multiple hydride groups in PMHS induced numerous rearrangements when activating ammonium adducts of these oligomers. MS/MS reactions observed for cationic adducts of MHS-DMS co-oligomers were clearly a combination of major dissociation routes established for the corresponding homopolymers. However, the concerted loss of H(2) and ammonia typically observed from ammonium adducts of PMHS was always shown to generate a quite abundant product ion even from co-oligomers enriched with DMS units. CONCLUSIONS: The high reactivity of hydride moieties, previously evidenced when these groups were at the end of PDMS chains, is also at work in PMHS, where each monomer contains a Si-H function. The presence of these hydride groups would increase the nucleophilic character of the oxygen atoms, favoring a tight bonding of lithium, and hence allowing in-chain cleavages to occur. In PMHS ammonium adducts, the particular reactivity of hydride moieties was illustrated by multiple hydride transfers but also by a dehydrogenation reaction systematically observed to proceed, together with the loss of ammonia, from all precursor ions. This latter reaction remained a very competitive process even from MHS/DMS co-oligomers with a low relative number of MHS units.

5.
Front Chem ; 1: 32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24790960

RESUMEN

Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity [high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)], PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems.

6.
Biointerphases ; 7(1-4): 59, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23065829

RESUMEN

Polyelectrolyte multilayer (PEM) films present a versatile surface functionalization method allowing to address many applications. These coatings suffer; however, from weak mechanical properties this problem can be addressed by the regular incorporation of clays in the layering process. To allow for an even better control of a whole set of film properties, among them their thermal stability, their stability in water, and their impermeability to anions, we postmodify (PAH-MMT)(n) films with polydopamine, by putting the pristine PEM films in contact with an oxygenated dopamine solution. This straightforward treatment allows to totally suppress the diffusion of hexacyanoferrate anions in the films and affects significantly its mechanical properties even, if the distribution of polydopamine through the film thickness is not yet known.


Asunto(s)
Bentonita/química , Dopamina/química , Poliaminas/química , Bentonita/metabolismo , Biotecnología/métodos , Dopamina/metabolismo , Módulo de Elasticidad , Permeabilidad , Poliaminas/metabolismo , Propiedades de Superficie , Temperatura , Termogravimetría
7.
Rapid Commun Mass Spectrom ; 26(17): 2057-67, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22847706

RESUMEN

RATIONALE: The partial and controlled degradation of insoluble cross-linked silicon-based polymers is a promising approach to enable their characterization by mass spectrometry. Providing that the chemolysis reaction specifically proceeds at cross-linking sites, the size of linear poly(dimethylsiloxane)s (PDMS) produced during the treatment should reflect the length of linear segments between branching points in the original network. In this context, the specificity of ethanol to act as a nucleophilic agent towards tri-functional silicon atoms in a D3TD(n)TD3 model was evaluated. METHODS: Tandem mass spectrometry (MS/MS) combined with accurate mass measurements, MS(3) experiments and collision-induced dissociation of authentic compounds was used for structural characterization of D3TD(n)TD3 ethanolysis products. All MS/MS data were obtained from electrosprayed ammonium adducts, previously reported to provide the most informative data for silicon-based polymers. RESULTS: Since the expected ethanolysis products were hydroxy- and ethoxy-terminated PDMS, the dissociation behavior of such polymeric species was established, using electrosprayed ammonium adducts as the precursor ions. Diagnostic product ions were identified, allowing four main D3TD(n)TD3 ethanolysis products to be structurally characterized. End-group analysis of these polymeric distributions clearly indicated that ethanolysis was mostly occurring on tri-functional silicon atoms but also, to a lesser extent, on those D atoms close to T silicons. CONCLUSIONS: The size of the linear skeleton located between two tri-functional silicon atoms could be accurately determined by mass spectrometric analyses of a polymeric model submitted to ethanolysis. This soft and rapid pre-treatment is thus a promising approach for determining the length of linear segments between branching points in the original network of cross-linked silicon-based polymers.

8.
J Colloid Interface Sci ; 386(1): 366-72, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22874639

RESUMEN

The formation of "polydopamine" thin films becomes a popular method to confer multifunctionality to solid-liquid interfaces through the available catechol groups of such films. The mechanism of film formation is, however, not well elucidated, and most investigators use the protocol developed by Messersmith et al. (H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426.) using a dopamine solution at a constant concentration of 2 g L(-1) in the presence of Tris(hydroxymethyl aminomethane) at pH 8.5. A particular finding of this initial study was that the film thickness reaches a constant value (almost substrate independent) of about 40 nm. Herein, we investigate the change in the polydopamine film thickness, morphology, surface energy and electrochemical properties as a function of the concentration of the dopamine solution put in the presence of silicon substrates. As a surprising finding, we observe a constant increase in the maximal film thickness with an increase in the dopamine solution between 0.1 and 5 g L(-1). The surface morphology is also markedly affected by the concentration of the dopamine solution, whereas the different components of the surface energy stay unaffected by the dopamine solution concentration. In addition, electrochemical impedance spectroscopy shows that the higher the initial dopamine concentration, the more rapidly compact and impermeable films are formed. Finally, we propose a model for the deposition of polydopamine films taking all our findings into account. This model relies on a rate equation taking into account both attractive and repulsive interactions between small polydopamine aggregates on the surface and in solution.


Asunto(s)
Dopamina/química , Concentración de Iones de Hidrógeno , Cinética , Polímeros/química , Propiedades de Superficie
9.
Colloids Surf B Biointerfaces ; 97: 124-31, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22609592

RESUMEN

Compact and linearly growing polyelectrolyte multilayer films have been used to suppress desorption of drugs, nanoparticles or proteins from underlying polyelectrolyte multilayer films as well as to significantly change their mechanical properties. The polyelectrolyte based capping layers are however cumbersome to deposit and alternative barrier layers offering enzymatic retention in the films as well as permeability to small molecules, for example the substrates of the embedded enzymes, are highly desired. In this article we show that barrier layers made through atmospheric pressure dielectric barrier discharge polymerization of ethylene glycol dimethacrylate offer the opportunity to simultaneously suppress enzyme desorption from the underlying polyelectrolyte multilayer film and to ensure accessibility of the enzymatic substrate. This holds true when the barrier film totally covers the underlying film and as long is not too thick. When the plasma deposited barrier becomes 300 nm thick, the hydrolysis curve of the enzyme presents a lag phase typical of a diffusion-limited process.


Asunto(s)
Membranas Artificiales , Polietilenos/química , Polímeros/química , Compuestos de Amonio Cuaternario/química
10.
ACS Appl Mater Interfaces ; 4(2): 1072-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22276845

RESUMEN

Controlled chemical modification of aluminum surface is carried by atmospheric plasma polymerization of allylamine. The amine-rich coatings are characterized and tested for their behavior as adhesion promoter. The adhesion strength of aluminum-epoxy assemblies is shown to increase according to primary amino group content and coating thickness, which in turn can be regulated by plasma power parameters, allowing tailoring the coating chemical properties. The increase in adherence can be correlated to the total and primary amino group contents in the film, indicating covalent bonding of epoxy groups to the primer as the basis of the mechanical improvement.

11.
Phys Chem Chem Phys ; 14(9): 3048-56, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22277928

RESUMEN

Polyelectrolyte "complexes" have been studied for almost a century and find more and more applications in cosmetics and DNA transfection. Most of the available studies focused on the thermodynamic aspects of the "complex" formation, mainly to determine phase diagrams and the influence of diverse physicochemical aspects on the formation of "complexes", but conversely less effort has been given to the kinetics of such processes. We describe herein the "complexation" kinetics of a short linear sodium polyphosphate (PSP) with poly(allylamine hydrochloride) (PAH) in the presence of 10 mM, 0.15 M and 1 M NaCl. We find, by using a combination of physicochemical techniques, that mixtures containing a 1 to 1 molar ratio of phosphate and amino groups allow the formation of "complexes" having a few 100 nm in diameter which progressively grow to particles up to 1.5 microns in hydrodynamic diameter, the growth process being accompanied by some progressive sedimentation. During this slow aggregation kinetics, the polyelectrolytes undergo a release of counterions and the zeta potential changes from a positive value to a negative one of -20 mV which is close to the zeta potential of (PSP-PAH)(n) films deposited under identical physicochemical conditions. Even though the complexes have a negative electrophoretic mobility, they contain an equimolar amount of amino and phosphate groups. This allows us to make some assumption about the structure of such "complexes" and to compare them with other published structures. We will also compare them with the aggregates found during the "layer-by-layer" deposition of the same species under the same conditions.

12.
J Colloid Interface Sci ; 366(1): 96-104, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22005347

RESUMEN

The deposition of polyelectrolyte multilayer films (PEMs) appears more and more as a versatile tool to functionalize a broad range of materials with coatings having controlled thicknesses and properties. To increase the control over the properties of such coatings, a good knowledge of their deposition mechanism is required. Since Cohen Stuart et al. (Langmuir 18 (2002) 5607-5612) showed that the adsorption of one polyelectrolyte could induce desorption of polyelectrolyte complexes instead of regular deposition, more and more findings highlight peculiarities in the deposition of such films. Herein we demonstrate that the association of sodium polyphosphate (PSP) as the polyanion and either poly(-L-lysine hydrobromide) (PLL) or poly(allylamine chloride) (PAH) as the polycations may lead to non-monotonous film deposition as a function of time. Complementary, films containing PSP and PLL can be obtained from a (PLL-HA)(n) template films after the exchange of HA (hyaluronic acid) from the sacrificial template by PSP from the solution. This exchange is accompanied by pronounced film erosion. However, when starting from a (PAH-HA)(n) template, the film erosion and exchange due to the contact with PSP is by far less pronounced, nevertheless the film morphology changes. These findings show that the nature of the polycation used to deposit the PEM film may have a profound influence of the film's response to a competing polyanion.

13.
Mater Sci Eng C Mater Biol Appl ; 32(7): 2103-2108, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062702

RESUMEN

Among various atmospheric pressure plasma deposition techniques, the so-called "Atmospheric Pressure Plasma Dielectric Barrier Discharges" (APDBD) has recently received a lot of attention due to the easy ignition of a stable discharge and its scalability. In the present work we aim at designing plasma polymer based films for biomedical applications, in which the drug to be released will be directly incorporated in the film during its deposition. Plasma polymer films made of methacrylic acid (MAA) and of ethylene glycol dimethacrylate (EGDMA) were prepared, allowing to obtain smart coatings able to release the molecule of interest, acetaminophen. A combination of different analytic tools shows that the functional groups of the film are well preserved with respect to the monomer structure and that the drug initially put in the gas phase is embedded in the plasma film with its structure being preserved. The physical and chemical characteristics of the elaborated film allowed for the progressive release of acetaminophen by simply dipping the film into a deionized water solution. However only 8% of the acetaminophen present in the monomer mixture could be released slowly in the presence of water. The significance of this result will be discussed.

14.
Langmuir ; 27(22): 13879-87, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21970541

RESUMEN

The present paper relies on the original idea to design multifunctional coatings, and in particular highly efficient intumescent flame retardant coatings, based on the diffusion of polyphosphates (PSPs) in exponentially growing "layer-by-layer" films made from montmorillonite (MMT) and poly(allylamine) (PAH). Here, we used polyphosphates as an acid source, polyallylamine as both a carbon source and a swelling agent, and finally clays to reinforce the intumescent char strength and also for their oxygen barrier property. The coatings made from the alternated deposition of n = 60 layer pairs of PAH and MMT reach a considerable thickness of ∼18 µm with well-defined ordering of the MMT in the direction parallel to the substrate. Structural, morphological, mechanical, gas barrier, and fire resistance properties of these films have been studied. Excellent oxygen barrier properties and extraordinary fire resistance properties are demonstrated based on the basis of a strong increase of the time to ignition and on a decrease of the heat release rate of polylactide substrates during mass loss calorimeter tests. This new and innovative intumescent flame retardant system based on (PAH-MMT)(n)-PSP coatings is a promising universal treatment for current polymeric materials.

15.
J Colloid Interface Sci ; 364(2): 359-65, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21944060

RESUMEN

Dopamine-melanin films produced through the oxidation of dopamine in the presence of oxygen as an oxidant allow to reduce silver ions onto silver particles as already described in the paper by Lee et al. (H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426.). This reduction process has to occur through the oxidation of moieties present in the melanin film. This investigation shows that the free radicals present in the pseudomelanin film, quantified by means of electron spin resonance spectroscopy (ESR) for the first time, are not used in the transformation of Ag(+) cations to deposit silver. The ESR signal is hardly affected by the deposition of silver particles. On the other hand, X-ray photoelectron spectroscopy shows a small increase in the density of quinone groups and a small decrease of catechol groups on the surface of the film during the deposition of silver. This suggests that the deposited pseudomelanin films contain a significant fraction of catechol groups able to trigger reduction processes of metallic cations. These silver nanoparticles remain adherent to the melanin films and allow for a quantitative killing of Escherichia coli over a broad range of bacterial dilutions. However, the presence of the bacteria induces a release of the nanoparticles. The pseudomelanin films cannot be reused again for a silver ion reduction step. Nevertheless, the easy preparation of the pseudomelanin-silver composite and its effective one shot bacterial killing activity renders the strategy presented in this paper attractive. Some fundamental questions about redox process allowed by the pseudomelanin films will also be asked.


Asunto(s)
Antibacterianos/química , Melaninas/química , Plata/química , Antibacterianos/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectrofotometría Ultravioleta
16.
Micron ; 42(8): 877-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21723736

RESUMEN

Gas impact on the EDS profile resolution at the interface of composite interface resin/Al was investigated with two gaseous environments: helium and water vapor. Two main components of the global profile at the interface were investigated: the contrast of the profile and the spatial resolution. A complementary approach was developed by comparing gas nature impact versus the pressure and versus the scattering regime. The results show that the unscattered electron beam mainly governs EDS profile spatial resolution as long as the scattering regime is single or oligo scattering. Then for plural scattering, spatial resolution is dramatically degraded. In addition, the contrast is degraded since a gas is introduced, whatever the gas, the pressure and so the scattering regime. This approach would enable to better understand the respective contributions of the unscattered beam and the skirt and the influence of the gases nature on them.

17.
Langmuir ; 27(6): 2819-25, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21332218

RESUMEN

The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.


Asunto(s)
Sulfato de Amonio/química , Dopamina/química , Melaninas/química , Oxidantes/química , Oxígeno/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Soluciones
18.
Langmuir ; 27(5): 1859-66, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21204542

RESUMEN

The concept of reactive layer-by-layer (LBL) deposition allows the build-up of films containing polycations and oxide particles, namely, silica and poorly crystalline anatase. Because polyelectrolyte multilayer films have been produced from blended polyanions or polycations solutions and since preferential incorporation of one of the partners of the blend has been found in most cases, one should wonder if a preferential polycondensation of either silica or titania should occur when the reactive deposition is performed from a solution containing a precursor of both inorganic species. X-ray photoelectron (XPS) and UV-visible spectroscopies show that the reactive LBL films made from the blend and poly(diallyldimethylammonium chloride) (PDADMAC) incorporate predominantly silica over TiO(2) over the whole molar fraction range of the silicic acic/hydrosoluble Ti(IV) complex. The transparency of the films below 365 nm, corresponding to the band edge of TiO(2), can easily be modulated. The silica/TiO(2) films are all able to bind hexacyanoferrate owing to the presence of the polycation allowing the binding of the oxide particles to the substrate. However, the binding capacity of the film does not scale proportionally to its thickness. The films made from eight dipping cycles showed a sudden decrease in their binding capacity for hexacyanoferrate when the molar fraction of the titanium complex was higher than ∼0.6 in the blend. For the same films, electrochemical impedance spectra (EIS) showed marked differences with a change in film composition: the more TiO(2) in the film, the higher the resistance to electron and to mass transfer. Therefore, EIS helps to explain the reduced surface concentration measured by means of cyclic voltammetry for films rich in TiO(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA