Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(14): 6727-6751, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37158299

RESUMEN

Nowadays, essential oils (EOs) have a wide use in many applications such as in food, cosmetics, pharmaceutical and animal feed products. Consumers' preferences concerning healthier and safer foodstuffs lead to an increased demand for natural products, in replacement of synthetic substances, used as preservatives, flavourings etc. EOs, besides being safe, are promising alternatives as natural food additives, and much research has been carried out on their antioxidant and antimicrobial activity. The initial purpose of this review is to discuss conventional and 'green' extraction techniques along with their basic mechanism for the isolation of EOs from aromatic plants. This review aims to provide a broad overview of the current knowledge about the chemical constitution of EOs while considering the existence of different chemotypes, since bioactivity is attributed to the chemical composition - qualitative and quantitative - of EOs. Although the food industry primarily uses EOs as flavourings, an overview on recent applications of EOs in food systems and active packaging is provided. EOs exhibit poor solubility in water, oxidation susceptibility, negative organoleptic effect and volatility, restricting their use. Encapsulation techniques have been proven to be one of the best approaches to preserve the biological activities of EOs and minimize their effects on food sensory qualities. Herein, different encapsulation techniques and their basic mechanism for loading EOs are discussed. EOs are highly accepted by consumers, who are often under the misconception that 'natural' means safe. This is, however, an oversimplification, and the possible toxicity of EOs should be taken into consideration. Thus, in the final section of the current review, the focus is on current EU legislation, safety assessment and sensory evaluation of EOs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aceites Volátiles , Animales , Aceites Volátiles/química , Aditivos Alimentarios , Antioxidantes , Plantas , Tecnología
2.
J Texture Stud ; 52(2): 228-239, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314120

RESUMEN

Peach (Prunus persica) products are destined for fresh consumption or are being consumed after processing in various forms. Despite its huge economic importance, no standardized protocols to define sensorial attributes and mechanical properties of canned peaches exist. Thus, the aim of the current study was dual and included the setting up of a list of sensorial descriptors and the elaboration of a toolkit to evaluate the textural properties of canned peaches using large deformation mechanical testing. A standardized vocabulary ("consensus language") was initially developed toward the determination and quantification of 15 sensorial attributes through a descriptive quantitative analysis (QDA) approach. Textural properties were additionally evaluated with a TA-XT Plus texture analyzer by applying three discrete large deformation tests [(a) puncture test with a flat cylindrical probe; (b) texture profile analysis (TPA) with a flat compression plunger; and (c) Kramer shear test (KST) cell with a bladed fixture]; that is, a total of nine textural properties, namely, "puncture firmness" (individual halves), "Kramer" hardness (applied in a complex mixture of peach slices), "TPA" hardness (central section of halves), fracturability, consistency, cohesiveness, springiness, chewiness, and total hardness were assessed. We hereby present novel protocols that encompass the comprehensive determination of sensorial and textural properties. The established protocols, providing complementary information, are readily applicable to the canning industry in setting up qualitative tests to determine product shelf life as well as to assist on going breeding programs for the evaluation of new candidate clingstone cultivars destined for canning purposes.


Asunto(s)
Prunus persica , Frutas , Dureza , Fitomejoramiento
3.
Food Chem ; 284: 125-132, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30744836

RESUMEN

To examine the effect of sugar reduction on the sensory perception of sweetened beverages, an orange juice soft drink model flavoured with seven characteristic compounds (hexanal, decanal, linalool, ethyl butanoate, α-pinene, ß-myrcene and (Z)-3-hexen-1-ol) was developed. Five samples were prepared with relevant sugar contents (5.2, 8.2, 9.7, 11.2 and 14.2 °Brix). Using retronasal quantitative descriptive analysis (QDA), nine attributes were found to differ significantly (p < 0.05) with sugar content. When the samples were evaluated orthonasally, only the attribute "overripe orange" significantly decreased (p < 0.05) with reduction of sugar content. Headspace solid-phase microextraction with gas chromatography-mass spectrometry showed that as sugar concentration decreased, the headspace concentration of six of the volatile compounds decreased, whilst ethyl butanoate remained constant. Principal component analysis revealed that the total release of the flavour compounds was highly correlated with the perceived intensity of the orthonasal attribute "overripe orange".


Asunto(s)
Citrus sinensis , Aromatizantes/química , Azúcares , Gusto , Jugos de Frutas y Vegetales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Odorantes , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...