Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 8(5)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37754195

RESUMEN

A promising method for improving the functional properties of calcium-phosphate coatings is the incorporation of various antibacterial additives into their structure. The microbial contamination of a superficial wound is inevitable, even if the rules of asepsis and antisepsis are optimally applied. One of the main problems is that bacteria often become resistant to antibiotics over time. However, this does not apply to certain elements, chemical compounds and drugs with antimicrobial properties. In this study, the fabrication and properties of zinc-containing calcium-phosphate coatings that were formed via micro-arc oxidation from three different electrolyte solutions are investigated. The first electrolyte is based on calcium oxide, the second on hydroxyapatite and the third on calcium acetate. By adding zinc oxide to the three electrolyte solutions, antibacterial properties of the coatings are achieved. Although the same amount of zinc oxide has been added to each electrolyte solution, the zinc concentration in the coatings obtained vary greatly. Furthermore, this study investigates the morphology, structure and chemical composition of the coatings. The antibacterial properties of the zinc-containing coatings were tested toward three strains of bacteria-Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Coatings of calcium acetate and zinc oxide contained the highest amount of zinc and displayed the highest zinc release. Moreover, coatings containing hydroxyapatite and zinc oxide show the highest antibacterial activity toward Pseudomonas aeruginosa, and coatings containing calcium acetate and zinc oxide show the highest antibacterial activities toward Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.

2.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631437

RESUMEN

The effect of low-temperature arc discharge plasma treatment in a nitrogen atmosphere on the modification of the physicochemical properties of PLA-based scaffolds was studied. In addition, the cellular-mediated immune response when macrophages of three donors interact with the modified surfaces of PLA-based scaffolds was investigated. PLA surface carbonization, accompanied by a carbon atomic concentration increase, was revealed to occur because of plasma treatment. Nitrogen plasma significantly influenced the PLA wettability characteristics, namely, the hydrophilicity and lipophilicity were improved, as well as the surface energy being raised. The viability of cells in the presence of the plasma-modified PLA scaffolds was evaluated to be higher than that of the initial cells.

3.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37447614

RESUMEN

Controlled regeneration processes involving tissue growth using the surface and structure of scaffolds, are actively used in tissue engineering. Reactive magnetron sputtering is a versatile surface modification method of both metal and polymer substrates, as the properties of the formed coatings can be modified in a wide range by changing the process parameters. In magnetron sputtering, the working gas and its composition have an influence on the chemical composition and physical characteristics of the obtained coatings. However, there are no studies addressing the influence of the nitrogen/xenon gas mixture ratio in direct current magnetron sputtering on the deposition rate, physicochemical and in vitro properties of surface-modified biocompatible poly-L-lactic acid scaffolds. In this study, the application of mixtures of nitrogen and xenon in various ratios is demonstrated to modify the surface of non-woven poly-L-lactic acid scaffolds by direct current magnetron sputtering of a titanium target. It has been found that the magnetron sputtering parameters chosen do not negatively influence the morphology of the prepared scaffolds, but increase the hydrophilicity. Moreover, quantitative spectroscopic analysis results indicate that the formed coatings are primarily composed of titanium oxide and titanium oxynitride compounds and is dependent on the gas mixture ratio only to a certain extent. Atomic force microscopy investigations of the roughness of the fibers of the electrospun scaffolds and the thickness of the coatings formed on them show that the considerable variations observed in the intrinsic fiber reliefs are due to the formation of a fine layer on the fiber surfaces. The observed decrease in roughness after plasma modification is due to temperature and radiation effects of the plasma. In vitro experiments with human osteosarcoma cells show that the scaffolds investigated here have no cytotoxic effect on these cells. The cells adhere and proliferate well on each of the surface-modified electrospun scaffolds, with stimulation of cell differentiation in the osteogenic direction.

4.
Materials (Basel) ; 16(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37109826

RESUMEN

Polyether ether ketone is a bioinert polymer, that is of high interest in research and medicine as an alternative material for the replacement of bone implants made of metal. The biggest deficit of this polymer is its hydrophobic surface, which is rather unfavorable for cell adhesion and thus leads to slow osseointegration. In order to address this drawback, 3D-printed and polymer extruded polyether ether ketone disc samples that were surface-modified with titanium thin films of four different thicknesses via arc evaporation were investigated and compared with non-modified disc samples. Depending on the modification time, the thickness of the coatings ranged from 40 nm to 450 nm. The 3D-printing process does not affect the surface or bulk properties of polyether ether ketone. It turned out that the chemical composition of the coatings obtained did not depend on the type of substrate. Titanium coatings contain titanium oxide and have an amorphous structure. Microdroplets formed on the sample surfaces during treatment with an arc evaporator contain a rutile phase in their composition. Surface modification of the samples via arc evaporation resulted in an increase in the arithmetic mean roughness from 20 nm to 40 nm for the extruded samples and from 40 nm to 100 nm for the 3D-printed samples, with the mean height difference increasing from 100 nm to 250 nm and from 140 nm to 450 nm. Despite the fact that the hardness and reduced elastic modulus of the unmodified 3D-printed samples (0.33 GPa and 5.80 GPa) are higher than those of the unmodified extruded samples (0.22 GPa and 3.40 GPa), the surface properties of the samples after modification are approximately the same. The water contact angles of the polyether ether ketone sample surfaces decrease from 70° to 10° for the extruded samples and from 80° to 6° for the 3D-printed samples as the thickness of the titanium coating increases, making this type of coating promising for biomedical applications.

5.
Pharmaceutics ; 15(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986800

RESUMEN

Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties' improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures.

6.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501648

RESUMEN

Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell-cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology.

7.
J Funct Biomater ; 13(4)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36547545

RESUMEN

In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them-oxide, another two-calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.

8.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433049

RESUMEN

In this study, polymer scaffolds were fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) and from non-biodegradable vinylidene fluoride-tetrafluoroethylene (VDF-TeFE) by electrospinning. These polymer scaffolds were subsequently surface-modified by sputtering titanium targets in an argon atmosphere. Direct current pulsed magnetron sputtering was applied to prevent a significant influence of discharge plasma on the morphology and mechanical properties of the nonwoven polymer scaffolds. The scaffolds with initially hydrophobic properties show higher hydrophilicity and absorbing properties after surface modification with titanium. The surface modification by titanium significantly increases the cell adhesion of both the biodegradable and the non-biodegradable scaffolds. Immunocytochemistry investigations of human gingival fibroblast cells on the surface-modified scaffolds indicate that a PLGA scaffold exhibits higher cell adhesion than a VDF-TeFE scaffold.

9.
Materials (Basel) ; 15(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431515

RESUMEN

Recently, polyether ether ketone has raised increasing interest in research and industry as an alternative material for bone implants. This polymer also has some shortcomings, as it is bioinert and its surface is relatively hydrophobic, causing poor cell adhesion and therefore slow integration with bone tissue. In order to improve biocompatibility, the surface of polyether ether ketone-based implants should be modified. Therefore, polished disc-shaped polyether ether ketone samples were surface-modified by direct current magnetron sputtering with ultrathin titanium and zirconium coatings (thickness < 100 nm). The investigation results show a uniform distribution of both types of coatings on the sample surfaces, where the coatings mostly consist of titanium dioxide and zirconium dioxide. Differential scanning calorimetry revealed that the crystalline structure of the polyether ether ketone substrates was not changed by the coating deposition. Both coatings are amorphous, as shown by X-ray diffraction investigations. The roughness of both coating types increases with increasing coating thickness, which is beneficial for cell colonization. The coatings presented and investigated in this study improve wettability, increasing surface energies, in particular the polar component of the surface energies, which, in turn, are important for cell adhesion.

10.
Colloids Surf B Biointerfaces ; 218: 112780, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988310

RESUMEN

The speed and motion directionality of bubble-propelled micromotors is dependent on bubble lifetime, bubble formation frequency and bubble stabilization. Absence and presence of bubble stabilizing agents should significantly influence speed and propulsion pattern of a micromotor, especially for fast-diffusing molecules like hydrogen. This study demonstrates a fully biodegradable Janus structured micromotor, propelled by hydrogen bubbles generated by the chemical reaction between hydrochloric acid and magnesium. Six different concentrations of hydrochloric acid and five different concentrations of the surfactant Triton X-100 were tested, which also cover the critical micelle concentration at a pH corresponding to an empty stomach. The Janus micromotor reverses its propulsion direction depending on the availability and concentration of a surfactant. Upon surfactant-free condition, the Janus micromotor is propelled by bubble cavitation, causing the micromotor to be pulled at high speed for short time intervals into the direction of the imploding bubble and thus backwards. In case of available surfactant above the critical micelle concentration, the Janus micromotor is pushed forward by the generated bubbles, which emerge at high frequency and form a bubble trail. The finding of the propulsion direction reversal effect demonstrates the importance to investigate the motion properties of artificial micromotors in a variety of different environments prior to application, especially with surfactants, since biological media often contain large amounts of surface-active components.


Asunto(s)
Magnesio , Surfactantes Pulmonares , Excipientes , Ácido Clorhídrico , Hidrógeno/química , Micelas , Octoxinol , Tensoactivos
11.
J Colloid Interface Sci ; 626: 101-112, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35780544

RESUMEN

Nowadays, vascular stents are commonly used to treat cardiovascular diseases. This article focuses on the influence of nitrogen doping of titanium dioxide thin films, utilized for coating metallic stents to improve their biological properties and biocompatibility. The hereby-investigated titanium oxide thin films are fabricated by magnetron sputtering in a reactive gas atmosphere consisting of argon and oxygen in the first case and argon, nitrogen and oxygen in the second case. Control of the nitrogen and oxygen gas flow rates, and hence their mixing ratios, allows adjustment of the nitrogen-doping level within the titanium dioxide thin films. A correlation of the thin film internal structure on the in vitro behavior of human mesenchymal stem cells derived from adipose tissue is hereby demonstrated. Different nitrogen doping levels affect the surface energy, the wettability, the cell adhesion and thus the cellular proliferation on top of the thin films. The surface colonization of cells on titanium dioxide thin films decreases up to a nitrogen-doping level of âˆ¼ 3.75 at.%, which is associated with a decreasing polar component of the surface energy. For non-doped titanium dioxide thin films, a weak chondrogenesis of adult human adipose-derived mesenchymal stem cells with lower chondrogenic differentiation compared to glass is observed. An increasing nitrogen-doping level leads to linear increase in the chondrogenic differentiation rate, which is comparable to the control value of uncoated glass. Other investigated differentiated cell types do not display this behavior.


Asunto(s)
Dióxido de Nitrógeno , Titanio , Argón , Humanos , Ensayo de Materiales , Nitrógeno/química , Oxígeno , Stents , Titanio/química , Titanio/farmacología
12.
Polymers (Basel) ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35160362

RESUMEN

Surface modification with the plasma of the direct current reactive magnetron sputtering has demonstrated its efficacy as a tool for enhancing the biocompatibility of polymeric electrospun scaffolds. Improvement of the surface wettability of materials with water, as well as the formation of active chemical bonds in the near-surface layers, are the main reasons for the described effect. These surface effects are also known to increase the release rate of drugs incorporated in fibers. Herein, we investigated the effect of plasma modification on the chloramphenicol release from electrospun poly (lactic acid) fibrous scaffolds. Scaffolds with high-50 wt./wt.%-drug content were obtained. It was shown that plasma modification leads to an increase in the drug release rate and drug diffusion coefficient, while not deteriorating surface morphology and mechanical properties of scaffolds. The materials' antibacterial activity was observed to increase in the first day of the experiment, while remaining on the same level as the unmodified group during the next six days. The proposed technique for modifying the surface of scaffolds will be useful for obtaining drug delivery systems with controlled accelerated release, which can expand the possibilities of local applications of antibiotics and other drugs.

13.
ACS Biomater Sci Eng ; 6(7): 3967-3974, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463309

RESUMEN

Direct current (DC) reactive magnetron sputtering is as an efficient method for enhancing the biocompatibility of poly(ε-caprolactone) (PCL) scaffolds. However, the PCL chemical bonding state, the composition of the deposited coating, and their interaction with immune cells remain unknown. Herein, we demonstrated that the DC reactive magnetron sputtering of the titanium target in a nitrogen atmosphere leads to the formation of nitrogen-containing moieties and the titanium dioxide coating on the scaffold surface. We have provided the possible mechanism of PCL fragmentation and coating formation supported by XPS results and DFT calculations. Our preliminary biological studies suggest that DC reactive magnetron sputtering of the titanium target could be an effective tool to control macrophage functional responses toward PCL scaffolds as it allows to inhibit respiratory burst while retaining cell viability and scavenging activity.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Macrófagos , Poliésteres
14.
J Pharm Sci ; 108(8): 2690-2697, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980858

RESUMEN

Various drug delivery systems (DDSs) are often used in modern medicine to achieve controlled and targeted drug release. Diffusional release of drugs from DDSs is often the main mechanism, especially at early times. Generally, average dimensions of DDS are used to model the drug release, but our recent work on drug release from fibers demonstrated that taking into account diameter distribution is essential. This work systematically investigated the effect of size distribution on diffusional drug release from DDSs of various geometric forms such as membranes, fibers, and spherical particles. The investigation clearly demonstrated that the size distribution has the largest effect on the drug release profiles from spherical particles compared to other geometric forms. Published experimental data for drug release from polymer microparticles and nanoparticles were fitted, and the diffusion coefficients were determined assuming reported radius distributions. Assuming the average radius when fitting the data leads to up to 5 times underestimation of the diffusion coefficient of drug in the polymer.


Asunto(s)
Preparaciones de Acción Retardada/química , Preparaciones Farmacéuticas/administración & dosificación , Polímeros/química , Difusión , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Modelos Químicos , Tamaño de la Partícula , Preparaciones Farmacéuticas/química
15.
ACS Biomater Sci Eng ; 5(11): 5990-5999, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405721

RESUMEN

The modulation of phagocyte responses is essential for successful performance of biomaterials in order to prevent negative outcomes associated with inflammation. Herein, we developed electrospun poly(ε-caprolactone) (PCL) scaffolds doped with the novel potent c-Jun N-terminal kinase (JNK) inhibitors 11H-indeno[1,2-b]quinoxalin-11-one oxime (IQ-1) and 11H-indeno[1,2-b]quinoxalin-11-one O-(O-ethylcarboxymethyl) oxime(IQ-1E) as a promising approach for modulating phagocyte activation. Optimized electrospinning parameters allowed us to produce microfiber composite materials with suitable mechanical properties. We found that embedded compounds were bound to the polymer matrix via hydrophobic interactions and released in two steps, with release mostly controlled by Fickian diffusion. The fabricated scaffolds doped with active compounds IQ-1 and IQ-1E effectively inhibited phagocyte inflammatory responses. For example, they suppressed human neutrophil activation by the biomaterials, as indicated by decreased neutrophil reactive oxygen species (ROS) production and Ca2+ mobilization. In addition, they inhibited lipopolysaccharide (LPS)-induced NF-κB/AP-1 reporter activity in THP-1Blue cells and interleukin (IL)-6 production in MonoMac-6 cells without affecting cell viability. These effects were attributed to the released compounds rather than cell-surface interactions. Therefore, our study demonstrates that doping tissue engineering scaffolds with novel JNK inhibitors represents a powerful tool for preventing adverse immune responses to biomaterials as well as serves as a platform for drug delivery.

16.
J Tissue Eng Regen Med ; 12(12): 2248-2255, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30350395

RESUMEN

Early treatment of bone fractures was performed using implants, which are often used in the form of plates of various types, which are fixed on the bone surface (extracellular fixation) and nails that are located in the medullary canal (intracerebral fixation). The goal of this study was to investigate the features of osseointegration of implants for internal fixation (intramedullary or extramedullary) with various bioactive coating techniques. During experimental study on 20 mongrel dogs, the implant model in the form of 1.0-mm plate made of titanium alloy (Ti6Al 4V) was placed in the medullary canal (first series) or under the periosteum (second series): the plates had bioactive coating (hydroxyapatite) produced using the technology of magnetron sputtering (six animals), plasma electrolytic oxidation or microarc oxidation technology (PEO; eight animals), and composite technology (six dogs). Anatomic and histological studies have shown that the process of active osseointegration of porous implants with bioactive coating begins after 7 days: at first, granulation tissue - and then fibrous connective tissue - is formed; after 14 days, the osteogenic substrate can be found, and after 28 days, the entire implant area is covered by the lamellar bone tissue, which creates single implant-bone block. The most active formation of bone tissue is observed around implants with bioactive coating produced using the last two technologies. Low traumatic placement of porous implants with bioactive coating in the medullary canal or subperiosteally provides the stimulation of reparative osteogenesis and rapid (especially with PEO technique) osseointegration of the implant.


Asunto(s)
Placas Óseas , Materiales Biocompatibles Revestidos , Implantes Experimentales , Tibia , Fracturas de la Tibia , Aleaciones , Animales , Perros , Femenino , Masculino , Tibia/diagnóstico por imagen , Tibia/metabolismo , Fracturas de la Tibia/diagnóstico , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/cirugía , Titanio
17.
Colloids Surf B Biointerfaces ; 157: 481-489, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28654885

RESUMEN

We propose the use of polylactic acid/calcium carbonate (PLA/CaCO3) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO3 systems. We used CaCO3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO3/PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles.


Asunto(s)
Cápsulas/química , Poliésteres/química , Polímeros/química , Solventes/química , Carbonato de Calcio/química , Microesferas , Tamaño de la Partícula
18.
Nanoscale ; 9(21): 7063-7070, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28513733

RESUMEN

Long term encapsulation combined with spatiotemporal release for a precisely defined quantity of small hydrophilic molecules on demand remains a challenge in various fields ranging from medical drug delivery, controlled release of catalysts to industrial anti-corrosion systems. Free-standing individually sealed polylactic acid (PLA) nano- and microchamber arrays were produced by one-step dip-coating a PDMS stamp into PLA solution for 5 s followed by drying under ambient conditions. The wall thickness of these hydrophobic nano-microchambers is tunable from 150 nm to 7 µm by varying the PLA solution concentration. Furthermore, small hydrophilic molecules were successfully in situ precipitated within individual microchambers in the course of solvent evaporation after sonicating the PLA@PDMS stamp to remove air-bubbles and to load the active substance containing solvent. The cargo capacity of single chambers was determined to be in the range of several picograms, while it amounts to several micrograms per cm2. Two different methods for sealing chambers were compared: microcontact printing versus dip-coating whereby microcontact printing onto a flat PLA sheet allows for entrapment of micro-air-bubbles enabling microchambers with both ultrasound responsiveness and reduced permeability. Cargo release triggered by external high intensity focused ultrasound (HIFU) stimuli is demonstrated by experiment and compared with numerical simulations.

19.
Mater Sci Eng C Mater Biol Appl ; 71: 862-869, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987783

RESUMEN

A new approach for the immobilization of poly(acrylic) acid (PAA) as a chemically reactive cross-linker on the surface of poly(lactic) acid-based (PLA) biomaterials is described. The proposed technique includes non-covalent attachment of a PAA layer to the surface of PLA-based biomaterial via biomaterial surface treatment with solvent/non-solvent mixture followed by the entrapment of PAA from its solution. Surface morphology and wettability of the obtained PLA-PAA composite materials were investigated by AFM and the sitting drop method respectively. The amount of the carboxyl groups on the composites surface was determined by using the fluorescent compounds (2-(5-aminobenzo[d]oxazol-2-yl)phenol (ABO) and its acyl derivative N-(2-(2-hydroxyphenyl)benzo[d]oxazol-5-yl)acetamide (AcABO)). It was shown that it is possible to obtain PLA-PAA composites with various surface relief and tunable wettability (57°, 62° and 66°). The capacity of the created PAA layer could be varied from 1.5nmol/cm2 to 0.1µmol/cm2 depending on the modification conditions. Additionally, using bovine serum albumin (BSA) it was demonstrated that such composites could be modified with proteins with high binding density (around 0.18nmol/cm2). Obtained fluoro-labeled PLA-PAA materials, as well as PLA-PAA composites themselves, are valuable since they can be used for biodegradable polymer implants tracking in living systems and as drug delivery systems.


Asunto(s)
Resinas Acrílicas/química , Plásticos Biodegradables/química , Sistemas de Liberación de Medicamentos , Poliésteres/química , Animales , Bovinos , Albúmina Sérica Bovina/química
20.
Mater Sci Eng C Mater Biol Appl ; 51: 117-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25842115

RESUMEN

Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ácido Láctico/química , Ácido Láctico/farmacología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Polímeros/química , Polímeros/farmacología , Células Cultivadas , Citocinas/inmunología , Módulo de Elasticidad , Dureza , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ensayo de Materiales , Peso Molecular , Atención Dirigida al Paciente/métodos , Poliésteres , Relación Estructura-Actividad , Propiedades de Superficie , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...