Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 22: 101310, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38645936

RESUMEN

This study aimed to determine the concentrations of ascorbic acid and polyphenols in fruits and peels of Citrus medica and Ziziphus spina-christi grown in Ethiopia. Conditions of ultrasound-assisted extraction (UAE) and ultra-high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) were optimized, using a multivariate experimental design. The optimum conditions of UAE were 15 min extraction time at 35 ℃, with 75 % aqueous methanol as solvent, and a fruit powder-to-solvent ratio (m/v) of 1:15. Among the different drying conditions investigated, freeze-drying was found to be appropriate for analyzing ascorbic acid, polyphenols, and antioxidant potential. The overall ranges, across the fruits and peels, of ascorbic acid, total polyphenols, and antioxidant potentials (EC50) obtained were 8.7 ± 1.4-91.2 ± 2.6 mg/100 g, 253.0 ± 6.3-764.1 ± 25.8 mg GAE/100 g and 2.4 ± 0.1-26.1 ± 2.9 mg/mL, respectively. This indicates that the fruits and peels of the studied plants are advantageous as sources of ascorbic acid and polyphenols.

2.
J Food Sci ; 89(4): 2096-2109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462850

RESUMEN

Millets are gaining attention as a superfood due to their higher nutritional value and cost-effectiveness. In this regard, extraction condition for the development of finger millet-based beverage was optimized using a central composite design. Soaking time (X1) and temperature (X2) in the range of 5-10 h and 40-60°C, respectively, were the independent variables taken for three responses, namely, yield, total solids, and sedimentation index. The optimized conditions are best fitted in quadratic model (R2 0.91) for all the dependent variables. Accordingly, the optimized levels selected for soaking time and temperature were 10 h and 60°C respectively, resulting in the yield (Y1) of 91.86% ± 0.94%, total solids (Y2) of 17.72% ± 0.56%, and sedimentation index (Y3) of 12.18% ± 0.06%. Further, xanthan gum (0.5%) and jaggery powder (5%) were added in the optimized beverage to improve its physicochemical and functional properties. Xanthan gum improved the physical stability and rheological properties of the beverage, whereas jaggery improved the flavor and phenolic content of the same. The optimized beverage had a good amount of phenolic content (53.70 µg GAE/mL), antioxidant activity (DPPH 13.76 µmol/mL), zeta potential (-19.8 mV), and glycemic index (57). The flow curve of beverages was obtained using power law model, and result indicated good consistency index (k = 0.7716 Pa s) with flow behavior (n = 0.3411) depicted its pseudoplastic nature. The optimized extraction condition significantly reduced the antinutrients, tannin, and phytic content by 47% and 14%, respectively, in optimized beverage than control.


Asunto(s)
Antioxidantes , Eleusine , Antioxidantes/química , Índice Glucémico , Bebidas/análisis , Temperatura , Fenoles
3.
Heliyon ; 10(3): e25224, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327469

RESUMEN

This study aims to develop oleogel as a potential substitute for solid fats in the diet. A novel combination of unmodified Soy Protein Isolate (SPI) and Xanthan Gum (XG) have been utilized to gelate sunflower oil, using an emulsion template approach. The experimental trials employing Response Surface Methodology are conducted to optimize various parameters that affect the oil binding capacity, textural and rheological properties of the oleogel. The concentration of soy protein varies in the range of 5-15 %, the ratio of soy protein to xanthan gum ranges from 1:2 to 1:4, and the ionic strength varies from 0.2 to 1 M. The goal is to formulate oleogel that closely resembles solid fats. Responses namely the oil binding capacity and gel strength value of oleogel were observed best fitted to a linear model whereas, the hardness of oleogel found following a quadratic model. The SPI-XG combination was found effective in entraping more than 95 % of the oil. The best formulation of SPI: XG, 1:4; SPI concentration, 15 % and ionic strength of 1.0 M with 95.5 % of oil retention and hardness and gel strength value comparable to commercial solid fats.

4.
Heliyon ; 10(3): e25330, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333841

RESUMEN

In the past decade, the demand and interest of consumers have expanded for using plant-based novel starch sources in different food and non-food processing. Therefore, millet-based value-added functional foods are acquired spare attention due to their excellent nutritional, medicinal, and therapeutic properties. Millet is mainly composed of starch (amylose and amylopectin), which is primary component of the millet grain and defines the quality of millet-based food products. Millet contains approximately 70 % starch of the total grain, which can be used as a, ingredient, thickening agent, binding agent, and stabilizer commercially due to its functional attributes. The physical, chemical, and enzymatic methods are used to extract starch from millet and other cereals. Numerous ways, such as non-thermal physical processes, including ultrasonication, HPP (High pressure processing) high-pressure, PEF (Pulsed electric field), and irradiation are used for modification of millet starch and improve functional properties compared to native starch. In the present review, different databases such as Scopus, Google Scholar, Research Gate, Science Direct, Web of Science, and PubMed were used to collect research articles, review articles, book chapters, reports, etc., for detailed study about millet starch, their extraction (wet milling process) and modification methods such as physical, chemical, biological. The impact of different modification approaches on the techno-functional properties of millet starch and their applications in different sectors have also been reviewed. The data and information created and aggregated in this study will give users the necessary knowledge to further utilize millet starch for value addition and new product development.

5.
Int J Biol Macromol ; 262(Pt 1): 129630, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336319

RESUMEN

The current novel study aims was to development and characterization of gum based (guar gum: almond gum) composite formulations with or without addition of oregano essential oils to extend the shelf life of okra at ambient condition. In this study, the optimized composite of guar gum: almond gum (75:25 V/V) prepared with addition of different concentrations (0.05, 0.1 and 0.15 % (V/V) of oregano essential oils to study their physicochemical, rheological, antimicrobial and particle size & zeta potential distribution. In addition, the effects of prepared edible coatings on shelf-life of okra vegetables were also investigated by assessing their postharvest quality attributes at ambient (23 °C) storage up to 7 days storage. The results revealed, increasing concentration of essential oils in composite coating significantly increased in pH, TSS, particle size, antimicrobial (Apergillus. niger, Escherichia coli, Staphylococcus aureus) activity respectively. Furthermore, the increasing EOs improved viscosity (n) and stability of the coatings matrix. In addition, the applications of guar gum (0.25 %): almond gum (0.5 %) composite ratio (75,25) with oregano essential oils exhibited excellent properties and potential to maintain the postharvest characteristics of okra throughout the storage period. The results of this study revealed that the addition of higher concentration (0.15 %) of essential oils in composite formulation of 75 % guar gum +25 % almond gum (03) showed higher value of pH (5.45), antioxidant activity (20.87 %), particle size (899.1 nm), zeta potential (-8.6 mV), polydispersity index (50.6 %) and higher antimicrobial activity against E.coli (19 mm), S. aureus (29 mm) and A. niger (35 mm) as compared to other formulations. Therefore, the lower composite formulation (01) with lower concentration (0.05 %) of oregano essential oil was found most effective formulation to maintain the shelf life of okra for up to 4 days as compared to other treated and control okra samples at ambient temperature by retarded the weight loss (12.74 %), maintained higher firmness (0.998 N), lower respiration rate (484.32 ml Co2/kg/h) respectively on 7 days of storage. The microbial load in the okra samples treated with different guar gum: almond gum composite showed lower microbial load in terms of total plate count and yeast & mold counts as compared to control samples. Samples treated with O3 coating showed lowest TPC (0.1 × 108 cfu/g) and YMC (6.63 × 106 cfu/g) followed by O2 (0.48 × 108 cfu/g, 7.9 × 106 cfu/g) and O1 (0.78 × 108 cfu/g, 9.45 × 106 cfu/g) respectively on 6rd day of storage, overall results indicated that the application of composite coating with different concentrations of oregano essential oils were effective to maintained postharvest shelf life of okra up to 4 days at ambient condition.


Asunto(s)
Abelmoschus , Antiinfecciosos , Galactanos , Hibiscus , Mananos , Aceites Volátiles , Gomas de Plantas , Prunus dulcis , Conservación de Alimentos/métodos , Staphylococcus aureus , Antiinfecciosos/farmacología , Aceites Volátiles/farmacología , Esperanza de Vida
6.
Food Funct ; 14(20): 9083-9099, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37750182

RESUMEN

Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Nanoestructuras , Humanos , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/prevención & control , Disponibilidad Biológica , Alimentos Fortificados
7.
J Food Sci ; 87(6): 2256-2290, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502679

RESUMEN

Tomato is considered as one of the most grown horticultural crops having a short shelf-life due to its climacteric nature of ripening, susceptibility to postharvest microbial decay, and mechanical damage, resulting in huge postharvest losses. Recently, the use of edible coatings has been seen as a promising environment friendly and sustainable technology for preserving the quality attributes and prolonging the shelf-life of tomato during storage. Although a lot of literature is available on the aspects of edible coating for fresh produce, especially stone and tropical fruits, but there is no dedicated comprehensive review that specifically addresses the requirements of edible coatings for whole fresh tomato. This review aims to provide the information about the desirable coating property requirements specific to tomato and summarizes or analyzes the recent studies conducted on the application of edible coating on tomato. The article also deals with recent trends on utilization of bioactive compounds as well as nanotechnological approaches for improving the performance and functionality of coating materials used for tomato. However, the edible coating technology for tomato is still at infancy state, and adoption of technology on a commercial scale requires economic viability and large-scale consumer acceptability.


Asunto(s)
Películas Comestibles , Solanum lycopersicum , Conservación de Alimentos/métodos , Frutas , Esperanza de Vida
8.
Plants (Basel) ; 11(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214879

RESUMEN

Guava (Psidium guajava L.) fruit is also known as the apple of tropics, belongs to the family of genus Psidium, and is widely cultivated in tropical zones of the world. Recently, the importance of guava fruit has increased due to its inherent nutritional content, pleasant aroma, excellent flavor, and delicious taste. It is considered an excellent source of nutrients and phytochemicals. Guava is a climacteric fruit that continues to mature or ripen even after harvest, showing an increase in the rate of respiration and metabolic activities within a short period, leading to rapid senescence or spoilage of fruit. It has limitations in terms of commercialization due to short storage life after harvest and sensitivity to diseases and chilling injury during the storage period. Many postharvest technologies such as edible packaging, modified atmosphere packaging (MAP), composite packaging, controlled atmosphere packaging (CAP), antimicrobial/antifungal packaging, and nano packaging have been used to retard the chilling injury and enhance the keeping quality of guava fruits during the storage period to control respiration rate, reduce weight loss, minimize lipid oxidation, and maintain organoleptic properties. However, these packaging technologies have varied effects on the internal and external quality attributes of guava fruits. This review, therefore, discusses the physiology, mechanism of ripening, oxidation, and ethylene production of guava fruits. The review also discusses the packaging technologies and their effect on the postharvest characteristics of guava fruits during the storage period.

9.
Food Sci Biotechnol ; 31(1): 17-36, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35059227

RESUMEN

Microfluidizer is one of the emerging processing technologies which has brought tremendous and desirable changes in food matrix. By generating high cavitation, shear, velocity impact and turbulent forces, microfluidizer brought structural modifications in food which led to significant improvements in physicochemical, functional, nutritional, rheological and sensory properties of food products without affecting their natural flavour. Reduction in particle size and thereby increase in surface area has brought these unique modifications. Microfluidization also improved bioavailability and bioaccessibility of bioactives by making them more exposed. Applications of microfluidizer includes stable emulsion/suspension formation, encapsulation, and nanoparticle production. It has also shown its preservation potential by inactivating enzymes and microbes thus improving food stability. The present review comprehensively discusses the working principle and effect of microfluidizer on dairy products, fruit juices, cereals, starches, egg yolk, emulsions, suspensions, and other novel products formulations. Microfluidization has opened a new channel for developing novel food ingredients non-thermally.

10.
J Food Sci Technol ; 58(3): 1014-1026, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33678885

RESUMEN

ABSTRACT: Millet flours due to their high dietary fibre and therapeutic health benefits offer immense potential to enhance the nutritional quality of conventional durum wheat pasta. In the present study, physiochemical and functional properties of durum wheat semolina (DWS), sorghum flour (SF), finger millet flour (FMF) and multigrain flour (MF) prepared with a blend of DWS (51.60%), SF (31.96%) and FMF (13.04%), were examined for their pasta making potential. Developed multigrain pasta was characterized on the basis of antioxidant, anti-nutritional, in vitro protein and starch digestibility and microstructural properties. The rheological properties (water absorption, development time and departure time), pasting profile (peak and breakdown viscosity) and transition temperature (onset; T o , mid; T p and conclusion; T c ) of MF was higher (P ≤ 0.05) when compared with DWS. Significant improvement in total dietary fibre, antioxidant activity with reduced glycemic index was observed for uncooked multigrain pasta over the control sample (DWS). Multigrain uncooked pasta revealed limitation of higher anti-nutritional factors, reduced protein digestibility and structural strength as compared with control. The cooking of pasta increased protein and starch digestibility of the control and multigrain pasta as an effect of decreased anti-nutritional factors. Results suggest that both SF and FMF can become useful for manufacturing of pasta with improved nutritional value, antioxidant levels and reduced glycemic index.

11.
Food Res Int ; 136: 109582, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846613

RESUMEN

The greatest challenge encountered by the food manufacturer is the loss of quality of food products during storage, which eventually adds to the waste. Edible packaging is known as a potential alternative to protecting food quality and improving shelf life by delaying microbial spoilage and providing moisture and gas barrier properties. Developments in edible packaging and technology have shown promising results in enhancing the shelf life of food products. In 2016, the edible packaging market was valued at $697 million and by 2023 is expected to hit $1097 million growing at a compound annual growth rate (CGAR) of 6.81% from 2017 to 2023 at global level. In global edible packaging markets specific industries including MonoSol LLC, Tate & Lyle Plc, WikiCell Designs Inc., JRF Technology LLC, Safetraces, Inc., BluWrap, Skipping Rocks Lab, Tipa Corp., Watson Inc., and Devro plc have played a key role. Edible packaging can be applied in two forms: (i) edible coating applied directly on the food product or (ii) preformed film wrapped around the food product. The aim of this study is to review different methods of film formation and edible coating depositions. Edible films can be produced using two methods, wet (casting) and dry (extrusion) processes; and methods such as dipping, spraying, fluidized-bed, and panning are used for deposition of edible coatings on the surface of food product. Casting and dipping methods for film formation and coating deposition, respectively, are easy to use and are preferred methods on a lab scale; whereas extrusion and spraying are preferred methods for film formation and coating deposition, respectively, on a commercial scale. This work can help researchers and industries to select an efficient and cost-effective method for the development of edible film/coating for specific application. Further study and evaluation of practical applications of methods of edible packaging should be carried out within the main purpose of keeping food safe with acceptable quality for extended period of time.


Asunto(s)
Películas Comestibles , Alimentos , Embalaje de Alimentos , Conservación de Alimentos
12.
Mol Microbiol ; 114(1): 93-108, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32181921

RESUMEN

Genome-wide transcriptomic analyses have revealed abundant expressed short open reading frames (ORFs) in bacteria. Whether these short ORFs, or the small proteins they encode, are functional remains an open question. One quarter of mycobacterial mRNAs are leaderless, beginning with a 5'-AUG or GUG initiation codon. Leaderless mRNAs often encode unannotated short ORFs as the first gene of a polycistronic transcript. Here, we show that polycysteine-encoding leaderless short ORFs function as cysteine-responsive attenuators of operonic gene expression. Detailed mutational analysis shows that one polycysteine short ORF controls expression of the downstream genes. Our data indicate that ribosomes stalled in the polycysteine tract block mRNA structures that otherwise sequester the ribosome-binding site of the 3'gene. We assessed endogenous proteomic responses to cysteine limitation in Mycobacterium smegmatis using mass spectrometry. Six cysteine metabolic loci having unannotated polycysteine-encoding leaderless short ORF architectures responded to cysteine limitation, revealing widespread cysteine-responsive attenuation in mycobacteria. Individual leaderless short ORFs confer independent operon-level control, while their shared dependence on cysteine ensures a collective response mediated by ribosome pausing. We propose the term ribulon to classify ribosome-directed regulons. Regulon-level coordination by ribosomes on sensory short ORFs illustrates one utility of the many unannotated short ORFs expressed in bacterial genomes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Mycobacterium smegmatis/genética , Sistemas de Lectura Abierta/genética , Péptidos/genética , Elementos de Respuesta/genética , Cisteína/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción
13.
Chemosphere ; 243: 125404, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31995871

RESUMEN

Scombroid poisoning in fish-based and other food products has raised concerns due to toxicity outbreaks and incidences associated with histamine, thus measuring the amount of histamine toxic molecule is considered crucial quality indicator of food safety and human health. In this study, liposome-based measurement of histamine was performed via rupturing mechanism of sulforhodamine B dye encapsulated anti-histamine antibody conjugated liposomal nanovesicles. The immunosensing ability of immuno-liposomal format was assessed by monitoring the fluorescence at excitation/emission wavelength of 550/585 nm. Immuno-liposomal format assays were considered, one based on single wash procedure (Method 1), which had a detection limit of 10 ppb and quantification limit 15-80 ppb. While Method 2 based on one-by-one wash procedure had a detection limit of 2-3 ppb and quantification limit 8.5 ppb-200 ppm that required 2 h 30 min to perform. In view of better quantification limit, Method 2 was chosen for further tests required to validate its applicability in real samples. The feasibility of Method 2 was reconfirmed in fresh mackerel fish, and canned fish (tuna and salmon) with a similar detection limits but with low amplified fluorescence signals and sufficient levels of histamine recovery from fresh mackerel (73.50-99.98%), canned tuna (79.08-103.74%) and salmon (74.56-99.02%). The specificity and method accuracy were expressed as % CV in the range 5.34%-8.48%. Overall, the developed multi-well sensing system (Method 2) showed satisfactory specificity, cost effectiveness, rapidity, and stability for monitoring histamine toxicity as a practical food diagnostic device.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Contaminación de Alimentos/análisis , Histamina/análisis , Toxinas Marinas/análisis , Toxinas Marinas/envenenamiento , Animales , Productos Pesqueros/análisis , Peces , Inocuidad de los Alimentos , Histamina/inmunología , Antagonistas de los Receptores Histamínicos , Humanos , Límite de Detección , Liposomas/inmunología , Rodaminas , Salmón , Alimentos Marinos/análisis , Sensibilidad y Especificidad , Atún
14.
ACS Appl Mater Interfaces ; 11(20): 18165-18177, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31025849

RESUMEN

The utilization of a sustainable and lightweight graphene aerogel (GA), synthesized from crude biomass, as a cell growth promoter and an adsorbent for the efficient removal of histamine (HIS), a food toxicant, from the real food matrix has been explored. Due to the self-supported three-dimensional nanoporous honeycomb-like structure of the graphene framework and the high surface area, the synthesized GA achieved an 80.69 ± 0.89% removal of HIS from red wine (spiked with HIS) after just 60 min under both acidic (3.0) and neutral (7.4) pH conditions. Furthermore, simple cleaning with 50% ethanol and deionized water, without any change in weight, allowed them to be reused more than 10 times with a still significant HIS removal ability (more than 71.6 ± 2.57%). In vitro cell culture experiments demonstrated that the synthesized GA had nontoxic effects on the cell viability (up to 80.35%) even at higher concentrations (10 mg mL-1), as determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays using human lung bronchial epithelial cells. Interestingly, GA promotes the wound-healing ability on the scratched epithelial cell surfaces via enhancing the cell migrations as also validated by the western blot analysis via expression levels of epithelial ß-catenin and E-cadherin proteins. The distinct structural advantage along with the nontoxicity of the green synthesized GA will not only facilitate the economic feasibility of the synthesized GA for its practical real-life applications in liquid toxin and pollutant removal from the food and environment but also broaden its applicability as a promising biomaterial of choice for biomedical applications.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Grafito , Histamina/química , Vino , Adsorción , Animales , Antígenos CD/metabolismo , Células COS , Cadherinas/metabolismo , Chlorocebus aethiops , Grafito/química , Grafito/farmacología , Humanos , beta Catenina/metabolismo
15.
ACS Chem Biol ; 13(9): 2498-2507, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30091899

RESUMEN

MenJ, annotated as an oxidoreductase, was recently demonstrated to catalyze the reduction (saturation) of a single double bond in the isoprenyl side-chain of mycobacterial menaquinone. This modification was shown to be essential for bacterial survival in J774A.1 macrophage-like cells, suggesting that MenJ may be a conditional drug target in Mycobacterium tuberculosis and other pathogenic mycobacteria. Recombinant protein was expressed in a heterologous host, and the activity was characterized. Although highly regiospecific in vivo, the activity is not absolutely regiospecific in vitro; in addition, the enzyme is not specific for naphthoquinones vs benzoquinones. Coenzyme Q-1 (a benzoquinone, UQ-1) was used as the lipoquinone substrate, and NADH oxidation was followed spectrophotometrically as the activity readout. NADPH could not be substituted for NADH in the reaction mixture. The enzyme contains a FAD binding site that was 72% occupied in the purified recombinant protein. Enzyme activity was maximal at 37 °C and pH 7.0; addition of divalent cations, EDTA, and reducing agents such as dithiothreitol to the reaction mixture had no effect on activity. The addition of detergents did not stimulate activity, and addition of saturating levels of FAD had relatively little effect on the observed kinetic parameters. These properties allowed the development of a facile assay needed to study this potential drug target, which is also amenable to high throughput screening. The Km values for UQ-1 using recombinant MenJ from Mycobacterium smegmatis or M. tuberculosis without saturating concentrations of FAD were found to be 52 ± 9.6 and 44 ± 4.8 µM, respectively, while the KmNADH values were determined to be 59 ± 14 and 64 ± 15 µM. The Km for MK-1, the menaquinone analogue of UQ-1, using recombinant MenJ from M. tuberculosis without saturating concentrations of FAD but in the presence of 0.5% Tween 80 was shown to be 30 ± 2.9 µM. Thus, this is the first report of a kinetic characterization of a member of the geranylgeranyl reductase family of enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/metabolismo , Vitamina K 2/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , NAD/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Tuberculosis/microbiología , Ubiquinona/metabolismo
16.
Food Chem Toxicol ; 120: 668-680, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30075315

RESUMEN

R-(+)-limonene (d-limonene) is a commonly used flavor additive in food, beverages and fragrances for its pleasant lemon-like odor. Considering its increasing applications, it's necessary to understand toxicological effects and risk associated with its use. R-(+)-limonene is rapidly absorbed in experimental animals and human beings following oral administration. In humans, it gets distributed to liver, kidney, and blood resulting in the formation of metabolites like perillic acid, dihydroperillic acid, limonene-1,8-diol and limonene-1,2 diol. Important toxic effects primarily reported in rodents are severe hyaline droplet nephrotoxicity (only in male rats due to specific protein α2u-globulin; however, this effect isn't valid for humans), hepatotoxicity and neurotoxicity. R-(+)-limonene does not show genotoxic, immunotoxic and carcinogenic effects. Substantial data is available about limonene's stability after treatment with thermal and non-thermal food processing techniques; however, information about toxicity of metabolites formed and their safe scientific limits is not available. In addition, toxicity of limonene degradation products formed during storage of citrus juices isn't known. Based on all available toxicological considerations, R-(+)-limonene can be categorized as low toxic additive. More detailed studies are required to better understand interaction of limonene with modern food processing techniques as well as degradation products generated and toxicity arising from such products.


Asunto(s)
Cosméticos/química , Aditivos Alimentarios/toxicidad , Limoneno/toxicidad , Animales , Citrus/química , Manipulación de Alimentos , Humanos , Limoneno/farmacocinética
17.
Microbiol Res ; 196: 80-88, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28164793

RESUMEN

The production of biocontrol factors by Pseudomonads is reported to be controlled at the post-transcriptional level by the GacS/GacA signal transduction pathway. This involves RNA-binding translational repressor proteins, RsmA and RsmE, and the small regulatory RNAs (sRNAs) RsmX, RsmY, and RsmZ. While the former represses genes involved in secondary metabolite production, the latter relieves this repression at the end of exponential growth. We have studied the fluorescent Pseudomonas strain Psd, possessing good biocontrol potential, and confirmed the presence of rsmY and rsmZ by PCR amplification. Gene constructs for all the three small RNAs (RsmX, RsmY and RsmZ) carried on broad host-range plasmid, pME6032 were mobilized into strain Psd. Expression analysis of gacA in the recombinant strains over-expressing rsmX (Psd-pME7320), rsmY (Psd-pME6359) and rsmZ (Psd-pME6918) revealed a significant upregulation of the response regulator. Besides, a remarkable down-regulation of rsmA was also reported in all the strains. The variant strains were found to produce comparatively higher levels of phenazines. Indole acetic acid levels were higher to some extent, and strain Psd-pME6918 also showed elevated production of HCN. The tomato seedlings infected with Fusarium oxysporum and Verticillium dahliae in the presence of culture filtrate of the recombinant strains showed better plant protection response in comparison to the wild-type strain Psd. These results suggest that small RNAs are important determinants in regulation of the biocontrol property of strain Psd.


Asunto(s)
Control Biológico de Vectores , Pseudomonas/genética , Pseudomonas/metabolismo , ARN Bacteriano/genética , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Escherichia coli/genética , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/microbiología , Fenazinas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Plantones/microbiología , Análisis de Secuencia de ADN , Sideróforos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional , Verticillium/efectos de los fármacos , Verticillium/patogenicidad
18.
ACS Cent Sci ; 1(6): 292-302, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26436137

RESUMEN

Menaquinone (MK) with partially saturated isoprenyl moieties is found in a wide range of eubacteria and Archaea. In many Gram-positive organisms, including mycobacteria, it is the double bond found in the ß-isoprene unit that is reduced. Mass spectral characterization of menaquinone from mycobacterial knockout strains and heterologous expression hosts demonstrates that Rv0561c (designated menJ) encodes an enzyme which reduces the ß-isoprene unit of menaquinone in Mycobacterium tuberculosis, forming the predominant form of menaquinone found in mycobacteria. MenJ is highly conserved in mycobacteria species but is not required for growth in culture. Disruption of menJ reduces mycobacterial electron transport efficiency by 3-fold, but mycobacteria are able to maintain ATP levels by increasing the levels of the total menaquinone in the membrane; however, MenJ is required for M. tuberculosis survival in host macrophages. Thus, MK with partially hydrogenated isoprenyl moieties represents a novel virulence factor and MenJ is a contextually essential enzyme and a potential drug target in pathogenic mycobacteria and other Gram-positive pathogens.

19.
J Food Sci Technol ; 51(9): 2038-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25190861

RESUMEN

In view of the wider consumption of bakery products, they could be good choice for the delivery of functionality. The present study attempts to develop a functional formulation of bread by incorporation of shatavari (Asparagus racemosus Willd.), which is an important medicinal plant of India. Central composite rotatable design (CCRD) was used for experiments in which yeast and shatavari powder were taken as variables. Response surface methodology (RSM) was used to optimize the bread formulations on the basis of hardness, adhesiveness, springiness, chewiness and cohesiveness as responses. Qualitative tests were performed for assessing the presence of phytochemicals in shatavari bread. Sensory attributes of the shatavari bread were evaluated using descriptive analysis technique. The optimum acceptable level for shatavari and yeast in bread was found to be 3.5 % and 4.96 %, respectively. All the phytochemicals such as alkaloid, steroid, terpenoid and saponin present in original herbs were also present in bread. However flavonoids were not found in the bread when analysed qualitatively and using TLC.

20.
Antimicrob Agents Chemother ; 58(11): 6413-23, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25136022

RESUMEN

MmpL3, a resistance-nodulation-division (RND) superfamily transporter, has been implicated in the formation of the outer membrane of Mycobacterium tuberculosis; specifically, MmpL3 is required for the export of mycolic acids in the form of trehalose monomycolates (TMM) to the periplasmic space or outer membrane of M. tuberculosis. Recently, seven series of inhibitors identified by whole-cell screening against M. tuberculosis, including the antituberculosis drug candidate SQ109, were shown to abolish MmpL3-mediated TMM export. However, this mode of action was brought into question by the broad-spectrum activities of some of these inhibitors against a variety of bacterial and fungal pathogens that do not synthesize mycolic acids. This observation, coupled with the ability of three of these classes of inhibitors to kill nonreplicating M. tuberculosis bacilli, led us to investigate alternative mechanisms of action. Our results indicate that the inhibitory effects of adamantyl ureas, indolecarboxamides, tetrahydropyrazolopyrimidines, and the 1,5-diarylpyrrole BM212 on the transport activity of MmpL3 in actively replicating M. tuberculosis bacilli are, like that of SQ109, most likely due to their ability to dissipate the transmembrane electrochemical proton gradient. In addition to providing novel insights into the modes of action of compounds reported to inhibit MmpL3, our results provide the first explanation for the large number of pharmacophores that apparently target this essential inner membrane transporter.


Asunto(s)
Adamantano/análogos & derivados , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Etilenodiaminas/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Adamantano/farmacología , Antibacterianos/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Membrana Celular , Factores Cordón/metabolismo , Farmacorresistencia Bacteriana Múltiple , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Ácidos Micólicos/metabolismo , Compuestos de Fenilurea/farmacología , Piperazinas/farmacología , Ionóforos de Protónes/farmacología , Pirroles/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Valinomicina/farmacología , Vitamina K 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...